Download Scala Programming For Big Data Analytics - eBooks (PDF)

Scala Programming For Big Data Analytics


Scala Programming For Big Data Analytics
DOWNLOAD

Download Scala Programming For Big Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scala Programming For Big Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Scala Programming For Big Data Analytics


Scala Programming For Big Data Analytics
DOWNLOAD
Author : Irfan Elahi
language : en
Publisher: Apress
Release Date : 2019-07-05

Scala Programming For Big Data Analytics written by Irfan Elahi and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-05 with Computers categories.


Gain the key language concepts and programming techniques of Scala in the context of big data analytics and Apache Spark. The book begins by introducing you to Scala and establishes a firm contextual understanding of why you should learn this language, how it stands in comparison to Java, and how Scala is related to Apache Spark for big data analytics. Next, you’ll set up the Scala environment ready for examining your first Scala programs. This is followed by sections on Scala fundamentals including mutable/immutable variables, the type hierarchy system, control flow expressions and code blocks. The author discusses functions at length and highlights a number of associated concepts such as functional programming and anonymous functions. The book then delves deeper into Scala’s powerful collections system because many of Apache Spark’s APIs bear a strong resemblance to Scala collections. Along the way you’ll see thedevelopment life cycle of a Scala program. This involves compiling and building programs using the industry-standard Scala Build Tool (SBT). You’ll cover guidelines related to dependency management using SBT as this is critical for building large Apache Spark applications. Scala Programming for Big Data Analytics concludes by demonstrating how you can make use of the concepts to write programs that run on the Apache Spark framework. These programs will provide distributed and parallel computing, which is critical for big data analytics. What You Will Learn See the fundamentals of Scala as a general-purpose programming language Understand functional programming and object-oriented programming constructs in Scala Use Scala collections and functions Develop, package and run Apache Spark applications for big data analytics Who ThisBook Is For Data scientists, data analysts and data engineers who intend to use Apache Spark for large-scale analytics. /div



Scala And Spark For Big Data Analytics


Scala And Spark For Big Data Analytics
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-25

Scala And Spark For Big Data Analytics written by Md. Rezaul Karim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-25 with Computers categories.


Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.



Fundamentals Of Big Data Analytics


Fundamentals Of Big Data Analytics
DOWNLOAD
Author : Mahmoud Ahmad Al-Khasawneh
language : en
Publisher: Xoffencer International Book Publication House
Release Date : 2025-05-29

Fundamentals Of Big Data Analytics written by Mahmoud Ahmad Al-Khasawneh and has been published by Xoffencer International Book Publication House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-29 with Computers categories.


The exponential rise of data in the modern digital era has been responsible for a transformation in the way that individuals, corporations, and governments conduct their operations. Every single click on the internet, every single transaction at a store, every single sensor in a machine, and every single post on social media all add to the massive amount of data that is known as Big Data, which is continuing to grow at an exponential rate. The tools and methods that have been used traditionally for data processing are no longer enough to effectively manage, process, or derive useful insights from the flood of information that is currently available. Big Data Analytics is a multidisciplinary area that integrates computer science, statistics, mathematics, and domain expertise in order to analyse and interpret vast and complex information. This has led to the birth of Big Data Analytics. In general, Big Data may be characterised by five fundamental aspects, which are sometimes referred to as the 5Vs. Volume refers to the volume of data that is produced each and every second. The rate at which information is generated and processed is referred to as velocity. A variety of data forms and kinds, including structured, semi-structured, and unstructured data, are referred to as variety. The trustworthiness and precision of the data is referred to as veracity. Value is defined as the possible advantages and insights that may be generated from data. The act of analysing these enormous databases in order to unearth previously concealed patterns, correlations, trends, and other important information is referred to as Big Data Analytics. With its help, businesses are able to make decisions based on data, improve the experiences of their customers, optimise their operations, and acquire a competitive advantage. It provides assistance for evidence-based approaches to the resolution of difficult issues in the realms of scientific research and public policy research. The capabilities of big data systems have been considerably improved as a result of the development of cutting-edge technologies such as distributed computing, cloud platforms, NoSQL databases, and real-time processing frameworks (such as Apache Hadoop and Apache Spark).



Big Data Analytics With Spark


Big Data Analytics With Spark
DOWNLOAD
Author : Mohammed Guller
language : en
Publisher: Apress
Release Date : 2015-12-29

Big Data Analytics With Spark written by Mohammed Guller and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-29 with Computers categories.


Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies thatare commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.



Research Practitioner S Handbook On Big Data Analytics


Research Practitioner S Handbook On Big Data Analytics
DOWNLOAD
Author : S. Sasikala
language : en
Publisher: CRC Press
Release Date : 2023-05-04

Research Practitioner S Handbook On Big Data Analytics written by S. Sasikala and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-04 with Computers categories.


This new volume addresses the growing interest in and use of big data analytics in many industries and in many research fields around the globe; it is a comprehensive resource on the core concepts of big data analytics and the tools, techniques, and methodologies. The book gives the why and the how of big data analytics in an organized and straightforward manner, using both theoretical and practical approaches. The book’s authors have organized the contents in a systematic manner, starting with an introduction and overview of big data analytics and then delving into pre-processing methods, feature selection methods and algorithms, big data streams, and big data classification. Such terms and methods as swarm intelligence, data mining, the bat algorithm and genetic algorithms, big data streams, and many more are discussed. The authors explain how deep learning and machine learning along with other methods and tools are applied in big data analytics. The last section of the book presents a selection of illustrative case studies that show examples of the use of data analytics in industries such as health care, business, education, and social media.



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Saumyadipta Pyne
language : en
Publisher: Springer
Release Date : 2016-10-12

Big Data Analytics written by Saumyadipta Pyne and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-12 with Computers categories.


This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.



Big Data Analytics With Microsoft Hdinsight In 24 Hours Sams Teach Yourself


Big Data Analytics With Microsoft Hdinsight In 24 Hours Sams Teach Yourself
DOWNLOAD
Author : Manpreet Singh
language : en
Publisher: Sams Publishing
Release Date : 2015-11-12

Big Data Analytics With Microsoft Hdinsight In 24 Hours Sams Teach Yourself written by Manpreet Singh and has been published by Sams Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-12 with Computers categories.


Sams Teach Yourself Big Data Analytics with Microsoft HDInsight in 24 Hours In just 24 lessons of one hour or less, Sams Teach Yourself Big Data Analytics with Microsoft HDInsight in 24 Hours helps you leverage Hadoop’s power on a flexible, scalable cloud platform using Microsoft’s newest business intelligence, visualization, and productivity tools. This book’s straightforward, step-by-step approach shows you how to provision, configure, monitor, and troubleshoot HDInsight and use Hadoop cloud services to solve real analytics problems. You’ll gain more of Hadoop’s benefits, with less complexity–even if you’re completely new to Big Data analytics. Every lesson builds on what you’ve already learned, giving you a rock-solid foundation for real-world success. Practical, hands-on examples show you how to apply what you learn Quizzes and exercises help you test your knowledge and stretch your skills Notes and tips point out shortcuts and solutions Learn how to... · Master core Big Data and NoSQL concepts, value propositions, and use cases · Work with key Hadoop features, such as HDFS2 and YARN · Quickly install, configure, and monitor Hadoop (HDInsight) clusters in the cloud · Automate provisioning, customize clusters, install additional Hadoop projects, and administer clusters · Integrate, analyze, and report with Microsoft BI and Power BI · Automate workflows for data transformation, integration, and other tasks · Use Apache HBase on HDInsight · Use Sqoop or SSIS to move data to or from HDInsight · Perform R-based statistical computing on HDInsight datasets · Accelerate analytics with Apache Spark · Run real-time analytics on high-velocity data streams · Write MapReduce, Hive, and Pig programs Register your book at informit.com/register for convenient access to downloads, updates, and corrections as they become available.



Scala Guide For Data Science Professionals


Scala Guide For Data Science Professionals
DOWNLOAD
Author : Pascal Bugnion
language : en
Publisher:
Release Date : 2017

Scala Guide For Data Science Professionals written by Pascal Bugnion and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.




Data Intensive Computing Applications For Big Data


Data Intensive Computing Applications For Big Data
DOWNLOAD
Author : Mamta Mittal
language : en
Publisher: SAGE Publications Limited
Release Date : 2018-01-15

Data Intensive Computing Applications For Big Data written by Mamta Mittal and has been published by SAGE Publications Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.


The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.



Hands On Data Analysis With Scala


Hands On Data Analysis With Scala
DOWNLOAD
Author : Rajesh Gupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-03

Hands On Data Analysis With Scala written by Rajesh Gupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-03 with Computers categories.


Master scala's advanced techniques to solve real-world problems in data analysis and gain valuable insights from your data Key FeaturesA beginner's guide for performing data analysis loaded with numerous rich, practical examplesAccess to popular Scala libraries such as Breeze, Saddle for efficient data manipulation and exploratory analysisDevelop applications in Scala for real-time analysis and machine learning in Apache SparkBook Description Efficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights What you will learnTechniques to determine the validity and confidence level of dataApply quartiles and n-tiles to datasets to see how data is distributed into many bucketsCreate data pipelines that combine multiple data lifecycle stepsUse built-in features to gain a deeper understanding of the dataApply Lasso regression analysis method to your dataCompare Apache Spark API with traditional Apache Spark data analysisWho this book is for If you are a data scientist or a data analyst who wants to learn how to perform data analysis using Scala, this book is for you. All you need is knowledge of the basic fundamentals of Scala programming.