Download Real World Machine Learning - eBooks (PDF)

Real World Machine Learning


Real World Machine Learning
DOWNLOAD

Download Real World Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real World Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Python Real World Machine Learning


Python Real World Machine Learning
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-11-14

Python Real World Machine Learning written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-14 with Computers categories.


Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!



Scala Machine Learning Projects


Scala Machine Learning Projects
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-31

Scala Machine Learning Projects written by Md. Rezaul Karim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with Computers categories.


Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.



Real World Machine Learning


Real World Machine Learning
DOWNLOAD
Author : Henrik Brink
language : en
Publisher:
Release Date : 2016

Real World Machine Learning written by Henrik Brink and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Machine learning categories.


"Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. It will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems. Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand."--Resource description page.



Real World Machine Learning


Real World Machine Learning
DOWNLOAD
Author : Henrik Brink
language : en
Publisher:
Release Date : 2016-03-02

Real World Machine Learning written by Henrik Brink and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-02 with Computers categories.


In a world where big data is the norm and near-real-time decisions are crucial, machine learning (ML) is a critical component of the data workflow. Machine learning systems can quickly crunch massive amounts of information to offer insights and make decisions in a way that matches or even surpasses human cognitive abilities. These systems use sophisticated computational and statistical tools to build models that can recognize and visualize patterns, predict outcomes, forecast values, and make recommendations. Real-World Machine Learning is a practical guide designed to teach developers the art of ML project execution. The book introduces the day-to-day practice of machine learning and prepares readers to successfully build and deploy powerful ML systems. Using the Python language and the R statistical package, it starts with core concepts like data acquisition and modeling, classification, and regression. Then it moves through the most important ML tasks, like model validation, optimization and feature engineering. It uses real-world examples that help readers anticipate and overcome common pitfalls. Along the way, they will discover scalable and online algorithms for large and streaming data sets. Advanced readers will appreciate the in-depth discussion of enhanced ML systems through advanced data exploration and pre-processing methods. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.



Realworld Machine Learning For Software Leaders


Realworld Machine Learning For Software Leaders
DOWNLOAD
Author : Sachin Medavarapu
language : en
Publisher: Notion Press
Release Date : 2025-04-12

Realworld Machine Learning For Software Leaders written by Sachin Medavarapu and has been published by Notion Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-12 with Education categories.


Machine learning is revolutionizing industries, yet many professionals struggle to bridge the gap between abstract theories and realworld applications. RealWorld Machine Learning for Software Leaders is a practical guide for software professionals, technology executives, and decisionmakers to understand and apply machine learning in real business environments. This book offers a clear, structured approach to machine learning, focusing on realworld applications rather than complex mathematics. It covers concepts like classification techniques, support vector machines, decision trees, ensemble learning, deep learning, natural language processing, and reinforcement learning. Whether you're a technology leader integrating machine learning into your organization, a software engineer seeking practical applications, or a business strategist exploring AIdriven solutions, this book will provide the knowledge needed to make informed decisions. Key Highlights: Understand how machine learning is applied in software engineering and business contexts. Gain insights into critical ML techniques and practical use cases. Learn about the challenges and considerations of implementing AI solutions. Explore realworld examples of machine learning across industries. This book is essential for those looking to leverage machine learning to drive innovation and strategic growth.



Python


Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher:
Release Date : 2017-06-16

Python written by Prateek Joshi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-16 with categories.




Real World Machine Learning


Real World Machine Learning
DOWNLOAD
Author : Henrik Fetherolf
language : en
Publisher:
Release Date : 2016

Real World Machine Learning written by Henrik Fetherolf and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Python (Computer program language) categories.


Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems. About the Technology Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand. About the Book Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems. What's Inside Predicting future behavior Performance evaluation and optimization Analyzing sentiment and making recommendations About the Reader No prior machine learning experience assumed. Readers should know Python. About the Authors Henrik Brink, Joseph Richards, and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning.



Intelligent Projects Using Python


Intelligent Projects Using Python
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Intelligent Projects Using Python written by Santanu Pattanayak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key FeaturesA go-to guide to help you master AI algorithms and concepts8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillanceUse TensorFlow, Keras, and other Python libraries to implement smart AI applicationsBook Description This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learnBuild an intelligent machine translation system using seq-2-seq neural translation machinesCreate AI applications using GAN and deploy smart mobile apps using TensorFlowTranslate videos into text using CNN and RNNImplement smart AI Chatbots, and integrate and extend them in several domainsCreate smart reinforcement, learning-based applications using Q-LearningBreak and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is for This book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book



Artificial Intelligence And Machine Learning For Real World Applications


Artificial Intelligence And Machine Learning For Real World Applications
DOWNLOAD
Author : Latesh Malik
language : en
Publisher: CRC Press
Release Date : 2025-10-16

Artificial Intelligence And Machine Learning For Real World Applications written by Latesh Malik and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-16 with Computers categories.


This book introduces foundational and advanced concepts in artificial intelligence (AI) and machine learning (ML), focusing on their real-world applications and societal implications. Covering topics from knowledge representation and model interpretability to deep learning and generative AI, Artificial Intelligence and Machine Learning for Real-World Applications: A Beginner's Guide with Case Studies includes practical Python implementations and case studies from healthcare, agriculture, and education. Beginning with core concepts such as AI fundamentals, knowledge representation, and statistical techniques, the text gradually advances to cover ML algorithms, deep learning architectures, and the basics of generative AI. Detailed discussions of data preprocessing, model training, evaluation metrics, and Python-based implementation make this book both practical and accessible. Offers real-world examples and case studies illustrating the societal impact and practical applications of AI and ML technologies Discusses data preprocessing techniques, model selection, and evaluation metrics with practical implementation in Python and in detail Explores AI problem-solving processes, knowledge representation, and model training strategies, catering to readers with varying levels of technical expertise Covers AI and ML principles spanning statistical techniques, ML algorithms, deep learning structures, and generative AI basics Focuses on societal applications in healthcare, agriculture, and education, addressing challenges faced by the elderly and special needs individuals This book is for professionals, researchers, and scholars interested in the application of AI and ML.



Practical Simulations For Machine Learning


Practical Simulations For Machine Learning
DOWNLOAD
Author : Paris Buttfield-Addison
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-06-07

Practical Simulations For Machine Learning written by Paris Buttfield-Addison and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-07 with Computers categories.


Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models.That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. You'll learn how to: Design an approach for solving ML and AI problems using simulations with the Unity engine Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning models Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization Train a variety of ML models using different approaches Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits