Download R Programming By Example - eBooks (PDF)

R Programming By Example


R Programming By Example
DOWNLOAD

Download R Programming By Example PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Programming By Example book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Learn R Programming In 24 Hours


Learn R Programming In 24 Hours
DOWNLOAD
Author : Alex Nordeen
language : en
Publisher: Guru99
Release Date : 2020-10-31

Learn R Programming In 24 Hours written by Alex Nordeen and has been published by Guru99 this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-31 with Computers categories.


R is a programming language developed is widely used for statistical and graphical analysis. It can execute advance machine learning algorithms including earning algorithm, linear regression, time series, statistical inference. R programming language is used by Fortune 500 companies and tech bellwethers like Uber, Google, Airbnb, Facebook, Apple. R provides a data scientist tools and libraries (Dplyr) to perform the 3 steps of analysis 1) Extract 2) Transform, Cleanse 3) Analyze. Table of Contents Chapter 1: What is R Programming Language? Introduction & Basics Chapter 2: How to Download & Install R, RStudio, Anaconda on Mac or Windows Chapter 3: R Data Types, Arithmetic & Logical Operators with Example Chapter 4: R Matrix Tutorial: Create, Print, add Column, Slice Chapter 5: Factor in R: Categorical & Continuous Variables Chapter 6: R Data Frame: Create, Append, Select, Subset Chapter 7: List in R: Create, Select Elements with Example Chapter 8: R Sort a Data Frame using Order() Chapter 9: R Dplyr Tutorial: Data Manipulation(Join) & Cleaning(Spread) Chapter 10: Merge Data Frames in R: Full and Partial Match Chapter 11: Functions in R Programming (with Example) Chapter 12: IF, ELSE, ELSE IF Statement in R Chapter 13: For Loop in R with Examples for List and Matrix Chapter 14: While Loop in R with Example Chapter 15: apply(), lapply(), sapply(), tapply() Function in R with Examples Chapter 16: Import Data into R: Read CSV, Excel, SPSS, Stata, SAS Files Chapter 17: How to Replace Missing Values(NA) in R: na.omit & na.rm Chapter 18: R Exporting Data to Excel, CSV, SAS, STATA, Text File Chapter 19: Correlation in R: Pearson & Spearman with Matrix Example Chapter 20: R Aggregate Function: Summarise & Group_by() Example Chapter 21: R Select(), Filter(), Arrange(), Pipeline with Example Chapter 22: Scatter Plot in R using ggplot2 (with Example) Chapter 23: How to make Boxplot in R (with EXAMPLE) Chapter 24: Bar Chart & Histogram in R (with Example) Chapter 25: T Test in R: One Sample and Paired (with Example) Chapter 26: R ANOVA Tutorial: One way & Two way (with Examples) Chapter 27: R Simple, Multiple Linear and Stepwise Regression [with Example] Chapter 28: Decision Tree in R with Example Chapter 29: R Random Forest Tutorial with Example Chapter 30: Generalized Linear Model (GLM) in R with Example Chapter 31: K-means Clustering in R with Example Chapter 32: R Vs Python: What's the Difference? Chapter 33: SAS vs R: What's the Difference?



R Programming For Beginners


R Programming For Beginners
DOWNLOAD
Author : Nathan Metzler
language : en
Publisher:
Release Date : 2019-11-22

R Programming For Beginners written by Nathan Metzler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-22 with categories.


Master the programming skills you need to turn raw, unfiltered data into deep insights and get ready for a data science and analytics career with this definitive guide to R Programming for Beginners! Do you want to get started learning how to program, but don't know where to begin? Are you interested in moving beyond Excel sheets and learning one of the most powerful programming language used in cutting edge research such as machine learning? If you answered yes to any of these questions, then this book might just be what you need. R can be a royal pain in the neck sometimes. Even seasoned programmers and data analysts still struggle with it. But it doesn't have to be you. In this guide, you're going to learn everything you need to do heavy data wrangling in R, with graded exercises and examples at the end to help you reinforce what you've learned. Here's a preview of what you're going to discover in R Programming for Beginners Step-by-step instructions to help you set up and install the R Environment with photos How to properly Execute R Scripts with your favorite code editor Everything you need to know about the R syntax-statements, blocks, comments, and keywords Steps to help you write your very first R script and begin your programming journey The 6 data types supported by the R programming language How to name variables and assign values to them Steps to help you write well-defined user functions effectively How to control program flow with decision making control structures and loops How to visualize data with R programming ...and lots more! Whether you're completely new to programming and have never written a single line of code before, or you're an intermediate or experienced R programmer looking to brush up on the basics, this book has everything you need to master R completely. Scroll to the top of the page and click the "Add to Cart" button to get started today!



R Programming By Example


R Programming By Example
DOWNLOAD
Author : Omar Trejo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-12-22

R Programming By Example written by Omar Trejo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-22 with Computers categories.


This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. About This Book Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Who This Book Is For This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed. What You Will Learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel In Detail R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. Style and Approach This is an easy-to-understand guide filled with real-world examples, giving you a holistic view of R and practical, hands-on experience.



R Programming For Beginners


R Programming For Beginners
DOWNLOAD
Author : Peter Simon
language : en
Publisher: Peter Simon
Release Date :

R Programming For Beginners written by Peter Simon and has been published by Peter Simon this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


R Programming for Beginners: Master the Fundamentals of R, Even with Zero Coding Experience The Ultimate Beginner’s Guide to Learning R—Perfect for First-Time Coders, Data Enthusiasts, and Future Analysts! Ready to dive into the world of data but not sure where to start? Whether you're exploring data science with R, planning to take an R programming online course, or just curious about coding, R Programming for Beginners is your go-to guide for mastering the essentials of the R programming language—no technical background needed. This book is more than just a read—it's a hands-on R course for beginners that walks you step by step through real-world examples, making learning R programming for beginners simple, effective, and even fun. 🔍 What This R Programming Book Covers: ✅ Introduction to R Software for Beginners Learn what R is, how to install and use R Studio for beginners, and why it's one of the top tools for data analysis and statistical computing. ✅ Essential R Programming Language Basics Master the core concepts: Data types and variables Vectors, matrices, and data frames Control structures (if statements, loops) Writing custom functions Basic R programs for data manipulation and cleaning ✅ Hands-On Practice for Real Learning Apply what you learn with practical examples and exercises—just like a real R programming course for beginners or an R programming tutorial for beginners would provide. 🎯 Why This Is the Best Way to Learn R Programming Online: 📘 Structured Like an R Programming Language Online Course – With clear progression and learning checkpoints. 💡 Beginner-Friendly Explanations – No jargon. Just step-by-step help for anyone who wants to learn R programming the right way. 💻 Perfect Alternative to an R Software Online Course – Learn at your own pace, with full control. 📊 Built for Data Analysis – This is not just theory—you'll learn how to apply R to real data. 🔧 Your First Step into Data Science with R – Ideal for building a strong foundation before advancing to machine learning, statistics, or big data. 👨‍🏫 Who This R Programming Training Is For: Absolute beginners who want a friendly R language tutorial for beginners Students looking to learn R language for beginners without overwhelming content Professionals starting a data career and seeking an easy-to-follow R software tutorial for beginners Self-learners who want a book-based R programming language course that replaces expensive bootcamps Anyone interested in R programming for dummies-style guidance, minus the fluff 🎁 Bonus Learning Tools Included: Practice datasets and sample code Clear R exercises with solutions Downloadable materials via our R language website Recommendations for the best tools to learn R language online Guidance on how to continue with an R programming online course after completing this book ✅ Start Your R Coding Journey Today If you’ve been searching for a beginner R tutorial that makes sense, or a way to learn R programming without frustration, this is the book for you. Whether you’re taking your first steps or using it as a supplement to an R programming language online course, this beginner guide will help you learn R language fast and with confidence. 🛒 Scroll up and get your copy today—start your journey with R, the powerful programming language for data science, now!



R Programming By Example


R Programming By Example
DOWNLOAD
Author : Omar Trejo Navarro
language : en
Publisher:
Release Date : 2017-12-22

R Programming By Example written by Omar Trejo Navarro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-22 with Computers categories.


This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. Key Features Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Book Description R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. What you will learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel Who this book is for This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed.



Learn R Programming In 1 Day


Learn R Programming In 1 Day
DOWNLOAD
Author : Krishna Rungta
language : en
Publisher:
Release Date : 2019-09-10

Learn R Programming In 1 Day written by Krishna Rungta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with categories.


R is a programming language developed is widely used for statistical and graphical analysis. It can execute advance machine learning algorithms including earning algorithm, linear regression, time series, statistical inference. R programming language is used by Fortune 500 companies and tech bellwethers like Uber, Google, Airbnb, Facebook, Apple. R provides a data scientist tools and libraries (Dplyr) to perform the 3 steps of analysis 1) Extract 2) Transform, Cleanse 3) Analyze. Table of Contents Chapter 1: What is R Programming Language? Introduction & Basics Chapter 2: How to Download & Install R, RStudio, Anaconda on Mac or Windows Chapter 3: R Data Types, Arithmetic & Logical Operators with Example Chapter 4: R Matrix Tutorial: Create, Print, add Column, Slice Chapter 5: Factor in R: Categorical & Continuous Variables Chapter 6: R Data Frame: Create, Append, Select, Subset Chapter 7: List in R: Create, Select Elements with Example Chapter 8: R Sort a Data Frame using Order() Chapter 9: R Dplyr Tutorial: Data Manipulation(Join) & Cleaning(Spread) Chapter 10: Merge Data Frames in R: Full and Partial Match Chapter 11: Functions in R Programming (with Example) Chapter 12: IF, ELSE, ELSE IF Statement in R Chapter 13: For Loop in R with Examples for List and Matrix Chapter 14: While Loop in R with Example Chapter 15: apply(), lapply(), sapply(), tapply() Function in R with Examples Chapter 16: Import Data into R: Read CSV, Excel, SPSS, Stata, SAS Files Chapter 17: How to Replace Missing Values(NA) in R: na.omit & na.rm Chapter 18: R Exporting Data to Excel, CSV, SAS, STATA, d104 File Chapter 19: Correlation in R: Pearson & Spearman with Matrix Example Chapter 20: R Aggregate Function: Summarise & Group_by() Example Chapter 21: R Select(), Filter(), Arrange(), Pipeline with Example Chapter 22: Scatter Plot in R using ggplot2 (with Example) Chapter 23: How to make Boxplot in R (with EXAMPLE) Chapter 24: Bar Chart & Histogram in R (with Example) Chapter 25: T Test in R: One Sample and Paired (with Example) Chapter 26: R ANOVA Tutorial: One way & Two way (with Examples) Chapter 27: R Simple, Multiple Linear and Stepwise Regression [with Example] Chapter 28: Decision Tree in R with Example Chapter 29: R Random Forest Tutorial with Example Chapter 30: Generalized Linear Model (GLM) in R with Example Chapter 31: K-means Clustering in R with Example Chapter 32: R Vs Python: What's the Difference? Chapter 33: SAS vs R: What's the Difference?



R Programming For Actuarial Science


R Programming For Actuarial Science
DOWNLOAD
Author : Peter McQuire
language : en
Publisher: John Wiley & Sons
Release Date : 2023-10-16

R Programming For Actuarial Science written by Peter McQuire and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-16 with Computers categories.


R Programming for Actuarial Science Professional resource providing an introduction to R coding for actuarial and financial mathematics applications, with real-life examples R Programming for Actuarial Science provides a grounding in R programming applied to the mathematical and statistical methods that are of relevance for actuarial work. In R Programming for Actuarial Science, readers will find: Basic theory for each chapter to complement other actuarial textbooks which provide foundational theory in depth. Topics covered include compound interest, statistical inference, asset-liability matching, time series, loss distributions, contingencies, mortality models, and option pricing plus many more typically covered in university courses. More than 400 coding examples and exercises, most with solutions, to enable students to gain a better understanding of underlying mathematical and statistical principles. An overall basic to intermediate level of coverage in respect of numerous actuarial applications, and real-life examples included with every topic. Providing a highly useful combination of practical discussion and basic theory, R Programming for Actuarial Science is an essential reference for BSc/MSc students in actuarial science, trainee actuaries studying privately, and qualified actuaries with little programming experience, along with undergraduate students studying finance, business, and economics.



R Programming


R Programming
DOWNLOAD
Author : R. Publishing
language : en
Publisher:
Release Date : 2019-09-03

R Programming written by R. Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-03 with categories.


R Programming for Beginners! Have you always wanted to learn R programming but are afraid it'll be too difficult for you? Or perhaps you know other programming languages but are interested in learning the R programming language fast? This book is for you. You no longer have to waste your time and money learning R programming from boring books that are 600 pages long, expensive online courses or complicated R programming tutorials that just leave you more confused. What this book offers... R for Beginners Complex concepts are broken down into simple steps to ensure that you can easily master the R Programming language even if you have never coded before. Carefully Chosen R Programming Examples Examples are carefully chosen to illustrate all concepts. In addition, the output for all examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Careful selection of topics Topics are carefully selected to give you a broad exposure to R, while not overwhelming you with information overload. Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidy verse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Learn The R Programming Language Fast Concepts are presented in a "to-the-point" style to cater to the busy individual. With this book, you can learn R in just one day and start coding immediately. How is this book different... The best way to learn R programming is by doing. This book includes a unique examples. Working through the examples will not only give you an immense sense of achievement, it"ll also help you retain the knowledge and master the language. Are you ready to dip your toes into the exciting world of R coding? This book is for you. Click the BUY button and download it now. What you will learn in this book: *introduction to R *environment setup *program structure *basic syntax *data types *variables *operators *decision making *loops *arrays *much,much,more! Download your R Programming copy today!



The Art Of R Programming


The Art Of R Programming
DOWNLOAD
Author : Norman Matloff
language : en
Publisher: No Starch Press
Release Date : 2011-10-11

The Art Of R Programming written by Norman Matloff and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-11 with Computers categories.


R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: –Create artful graphs to visualize complex data sets and functions –Write more efficient code using parallel R and vectorization –Interface R with C/C++ and Python for increased speed or functionality –Find new R packages for text analysis, image manipulation, and more –Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.



R For Data Analysis In Easy Steps 2nd Edition


R For Data Analysis In Easy Steps 2nd Edition
DOWNLOAD
Author : Mike McGrath
language : en
Publisher: In Easy Steps Limited
Release Date : 2023-06-05

R For Data Analysis In Easy Steps 2nd Edition written by Mike McGrath and has been published by In Easy Steps Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.


The R language is widely used by statisticians for data analysis, and the popularity of R programming has therefore increased substantially in recent years. The emerging Internet of Things (IoT) gathers increasing amounts of data that can be analyzed to gain useful insights into trends. R for Data Analysis in easy steps, 2nd edition has an easy-to-follow style that will appeal to anyone who wants to produce graphic visualizations to gain insights from gathered data. The book begins by explaining core programming principles of the R programming language, which stores data in “vectors” from which simple graphs can be plotted. Next, it describes how to create “matrices” to store and manipulate data from which graphs can be plotted to provide better insights. This book then demonstrates how to create “data frames” from imported data sets, and how to employ the “Grammar of Graphics” to produce advanced visualizations that can best illustrate useful insights from your data. R for Data Analysis in easy steps, 2nd edition contains separate chapters on the major features of the R programming language. There are complete example programs that demonstrate how to create Line graphs, Bar charts, Histograms, Scatter graphs, Box plots, and more. The code for each R script is listed, together with screenshots that illustrate the actual output when that script has been executed. The free, downloadable example R code is provided for clearer understanding. By the end of this book you will have gained a sound understanding of R programming, and be able to write your own scripts that can be executed to produce graphic visualizations for data analysis. You need have no previous knowledge of any programming language, so it's ideal for the newcomer to computer programming. Updated for the latest version of R. Contents: Getting started Storing values Performing operations Testing conditions Employing functions Building matrices Constructing data frames Producing quick plots Telling stories with data Plotting perfection