Pytorch Artificial Intelligence Fundamentals
DOWNLOAD
Download Pytorch Artificial Intelligence Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pytorch Artificial Intelligence Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Pytorch Artificial Intelligence Fundamentals
DOWNLOAD
Author : Jibin Mathew
language : en
Publisher:
Release Date : 2020-02-28
Pytorch Artificial Intelligence Fundamentals written by Jibin Mathew and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.
Kickstart Artificial Intelligence Fundamentals
DOWNLOAD
Author : Dr. S.Mahesh Anand
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2025-03-29
Kickstart Artificial Intelligence Fundamentals written by Dr. S.Mahesh Anand and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-29 with Computers categories.
TAGLINE Master AI Fundamentals and Build Real-World Machine Learning and Deep Learning Solutions KEY FEATURES ● Hands-on AI guide with Python, TensorFlow, and Keras implementations. ● Step-by-step walkthroughs of Machine Learning, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) models. ● Bridges AI theory with real-world applications and coding exercises. DESCRIPTION AI is transforming industries, driving innovation, and shaping the future of technology. A strong foundation in AI fundamentals is essential for anyone looking to stay ahead in this rapidly evolving field. Kickstart Artificial Intelligence Fundamentals is a comprehensive companion designed to demystify core AI concepts, covering Machine Learning, Deep Learning, and Neural Networks. Tailored for all AI enthusiasts, this book provides hands-on Python implementation using the TensorFlow-Keras framework, ensuring a seamless learning experience from theory to practice. Bridging the gap between concepts and real-world applications, this book offers intuitive explanations, mathematical foundations, and practical use cases. Readers will explore supervised and unsupervised Machine Learning models, master Convolutional Neural Networks for image classification, and leverage Long Short-Term Memory networks for time-series forecasting. Each chapter includes coding examples and guided exercises, making it an invaluable resource for both beginners and advanced learners. Beyond technical expertise, this book explores emerging trends like Generative AI and ethical considerations in AI, preparing readers for the challenges and opportunities in the field. This book will provide you the essential knowledge and hands-on experience to stay competitive. Don’t get left behind—embrace AI and future-proof your career today! WHAT WILL YOU LEARN ● Build and train machine learning models for real-world datasets. ● Apply neural networks to classification and regression tasks. ● Implement CNNs and LSTMs for vision and sequence modeling. ● Solve AI problems using Python, TensorFlow, and Keras. ● Fine-tune pre-trained models for domain-specific applications. ● Explore generative AI for creative and industrial use cases. WHO IS THIS BOOK FOR? This book is tailored for students in AI courses at leading universities and professionals transitioning into AI. Suitable for undergraduates in BE, BTech, BCA, MCA, and related fields, as well as data scientists, software engineers, and analysts, it bridges AI theory with hands-on Python applications. Whether you're a beginner or an expert, this guide equips you with essential AI and GenAI skills. TABLE OF CONTENTS 1. Introduction and Evolution of AI Technologies 2. Modern Approach to AI 3. Introduction to Machine Learning 4. Regression Versus Classification Model 5. Naive Bayes as a Linear Classifier 6. Tree-Based Machine Learning Models 7. Distance-Based Machine Learning Models 8. Support Vector Machines 9. Introduction to Artificial Neural Networks 10. Training Neural Networks 11. Introduction to Convolutional Neural Networks 12. Classification Using CNN 13. Pre-trained CNN Architectures 14. Introduction to Recurrent Neural Networks 15. Introduction to Long Short-Term Memory (LSTM) 16. Application of LSTM in NLP and TS Forecasting 17. Emerging Trends and Ethical Considerations in AI Index
The The Deep Learning With Pytorch Workshop
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-22
The The Deep Learning With Pytorch Workshop written by Hyatt Saleh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.
Get a head start in the world of AI and deep learning by developing your skills with PyTorch Key FeaturesLearn how to define your own network architecture in deep learningImplement helpful methods to create and train a model using PyTorch syntaxDiscover how intelligent applications using features like image recognition and speech recognition really process your dataBook Description Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you’re starting from scratch. It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures. The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues. By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps. What you will learnExplore the different applications of deep learningUnderstand the PyTorch approach to building neural networksCreate and train your very own perceptron using PyTorchSolve regression problems using artificial neural networks (ANNs)Handle computer vision problems with convolutional neural networks (CNNs)Perform language translation tasks using recurrent neural networks (RNNs)Who this book is for This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
Hands On Artificial Intelligence For Banking
DOWNLOAD
Author : Jeffrey Ng
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-10
Hands On Artificial Intelligence For Banking written by Jeffrey Ng and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-10 with Computers categories.
Delve into the world of real-world financial applications using deep learning, artificial intelligence, and production-grade data feeds and technology with Python Key FeaturesUnderstand how to obtain financial data via Quandl or internal systemsAutomate commercial banking using artificial intelligence and Python programsImplement various artificial intelligence models to make personal banking easyBook Description Remodeling your outlook on banking begins with keeping up to date with the latest and most effective approaches, such as artificial intelligence (AI). Hands-On Artificial Intelligence for Banking is a practical guide that will help you advance in your career in the banking domain. The book will demonstrate AI implementation to make your banking services smoother, more cost-efficient, and accessible to clients, focusing on both the client- and server-side uses of AI. You’ll begin by understanding the importance of artificial intelligence, while also gaining insights into the recent AI revolution in the banking industry. Next, you’ll get hands-on machine learning experience, exploring how to use time series analysis and reinforcement learning to automate client procurements and banking and finance decisions. After this, you’ll progress to learning about mechanizing capital market decisions, using automated portfolio management systems and predicting the future of investment banking. In addition to this, you’ll explore concepts such as building personal wealth advisors and mass customization of client lifetime wealth. Finally, you’ll get to grips with some real-world AI considerations in the field of banking. By the end of this book, you’ll be equipped with the skills you need to navigate the finance domain by leveraging the power of AI. What you will learnAutomate commercial bank pricing with reinforcement learningPerform technical analysis using convolutional layers in KerasUse natural language processing (NLP) for predicting market responses and visualizing them using graph databasesDeploy a robot advisor to manage your personal finances via Open Bank APISense market needs using sentiment analysis for algorithmic marketingExplore AI adoption in banking using practical examplesUnderstand how to obtain financial data from commercial, open, and internal sourcesWho this book is for This is one of the most useful artificial intelligence books for machine learning engineers, data engineers, and data scientists working in the finance industry who are looking to implement AI in their business applications. The book will also help entrepreneurs, venture capitalists, investment bankers, and wealth managers who want to understand the importance of AI in finance and banking and how it can help them solve different problems related to these domains. Prior experience in the financial markets or banking domain, and working knowledge of the Python programming language are a must.
Deep Learning With Python
DOWNLOAD
Author : Nikhil Ketkar
language : en
Publisher: Apress
Release Date : 2021-04-10
Deep Learning With Python written by Nikhil Ketkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-10 with Computers categories.
Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook’s Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. What You'll Learn Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models Who This Book Is For Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.
Applied Deep Learning With Pytorch
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher:
Release Date : 2019-04-26
Applied Deep Learning With Pytorch written by Hyatt Saleh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-26 with Computers categories.
Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Key Features Understand deep learning and how it can solve complex real-world problems Apply deep learning for image classification and text processing using neural networks Develop deep learning solutions for tasks such as basic classification and solving style transfer problems Book Description Machine learning is rapidly becoming the most preferred way of solving data problems, thanks to the huge variety of mathematical algorithms that find patterns, which are otherwise invisible to us. Applied Deep Learning with PyTorch takes your understanding of deep learning, its algorithms, and its applications to a higher level. The book begins by helping you browse through the basics of deep learning and PyTorch. Once you are well versed with the PyTorch syntax and capable of building a single-layer neural network, you will gradually learn to tackle more complex data problems by configuring and training a convolutional neural network (CNN) to perform image classification. As you progress through the chapters, you'll discover how you can solve an NLP problem by implementing a recurrent neural network (RNN). By the end of this book, you'll be able to apply the skills and confidence you've gathered along your learning process to use PyTorch for building deep learning solutions that can solve your business data problems. What you will learn Detect a variety of data problems to which you can apply deep learning solutions Learn the PyTorch syntax and build a single-layer neural network with it Build a deep neural network to solve a classification problem Develop a style transfer model Implement data augmentation and retrain your model Build a system for text processing using a recurrent neural network Who this book is for Applied Deep Learning with PyTorch is designed for data scientists, data analysts, and developers who want to work with data using deep learning techniques. Anyone looking to explore and implement advanced algorithms with PyTorch will also find this book useful. Some working knowledge of Python and familiarity with the basics of machine learning are a must. However, knowledge of NumPy and pandas will be beneficial, but not essential.
The Deep Learning With Pytorch Workshop
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher:
Release Date : 2020-07-20
The Deep Learning With Pytorch Workshop written by Hyatt Saleh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-20 with Computers categories.
Deep Learning With Pytorch Lightning
DOWNLOAD
Author : Kunal Sawarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-04-29
Deep Learning With Pytorch Lightning written by Kunal Sawarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-29 with Computers categories.
Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper Key FeaturesBecome well-versed with PyTorch Lightning architecture and learn how it can be implemented in various industry domainsSpeed up your research using PyTorch Lightning by creating new loss functions, networks, and architecturesTrain and build new algorithms for massive data using distributed trainingBook Description PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize productivity for DL projects while ensuring full flexibility from model formulation through to implementation. You'll take a hands-on approach to implementing PyTorch Lightning models to get up to speed in no time. You'll start by learning how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. Next, you'll build a network and application from scratch and see how you can expand it based on your specific needs, beyond what the framework can provide. The book also demonstrates how to implement out-of-box capabilities to build and train Self-Supervised Learning, semi-supervised learning, and time series models using PyTorch Lightning. As you advance, you'll discover how generative adversarial networks (GANs) work. Finally, you'll work with deployment-ready applications, focusing on faster performance and scaling, model scoring on massive volumes of data, and model debugging. By the end of this PyTorch book, you'll have developed the knowledge and skills necessary to build and deploy your own scalable DL applications using PyTorch Lightning. What you will learnCustomize models that are built for different datasets, model architectures, and optimizersUnderstand how a variety of Deep Learning models from image recognition and time series to GANs, semi-supervised and self-supervised models can be builtUse out-of-the-box model architectures and pre-trained models using transfer learningRun and tune DL models in a multi-GPU environment using mixed-mode precisionsExplore techniques for model scoring on massive workloadsDiscover troubleshooting techniques while debugging DL modelsWho this book is for This deep learning book is for citizen data scientists and expert data scientists transitioning from other frameworks to PyTorch Lightning. This book will also be useful for deep learning researchers who are just getting started with coding for deep learning models using PyTorch Lightning. Working knowledge of Python programming and an intermediate-level understanding of statistics and deep learning fundamentals is expected.
Machine Learning With Pytorch And Scikit Learn
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-02-25
Machine Learning With Pytorch And Scikit Learn written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Computers categories.
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Mastering Generative Ai With Pytorch
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Independently Published
Release Date : 2024-05-31
Mastering Generative Ai With Pytorch written by Anand Vemula and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-31 with Computers categories.
**Mastering Generative AI with PyTorch: From Fundamentals to Advanced Models** Unlock the potential of generative artificial intelligence with "Mastering Generative AI with PyTorch." This comprehensive guide takes you on a journey from the foundational concepts of generative AI to the implementation of advanced models, providing a clear and practical roadmap for mastering this cutting-edge technology. The book begins with an introduction to the core principles of generative AI, explaining its significance and applications in various fields such as art, entertainment, and scientific research. You will explore different types of generative models, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Autoregressive Models, gaining a deep understanding of their architectures and mechanisms. With a focus on hands-on learning, the book introduces you to PyTorch, one of the most popular and powerful deep learning frameworks. Step-by-step instructions guide you through the installation of PyTorch and fundamental operations, setting a strong foundation for building complex models. Each chapter is designed to build on the previous one, gradually increasing in complexity and depth. In the GANs section, you will learn about their architecture, training process, and advanced variations like Conditional GANs and CycleGANs. The book provides detailed code examples and explanations, enabling you to implement and train your own GANs for diverse applications. The VAE section delves into the mathematical foundations and training techniques of VAEs, including practical examples of implementing both standard and conditional VAEs with PyTorch. You'll gain insights into how VAEs can generate high-quality, realistic data and their use in creative and scientific tasks. Autoregressive models, including PixelCNN and PixelRNN, are thoroughly covered, with explanations of their applications in sequential data generation. The book also explores the integration of attention mechanisms and transformers to enhance model performance. By the end of this book, you will have a solid understanding of generative AI and be equipped with the skills to implement and experiment with various generative models using PyTorch. Whether you are a beginner or an experienced practitioner, "Mastering Generative AI with PyTorch" provides the knowledge and tools needed to excel in the exciting field of generative AI.