Proof Theory
DOWNLOAD
Download Proof Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Proof Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Proof Theory And Automated Deduction
DOWNLOAD
Author : Jean Goubault-Larrecq
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-11-30
Proof Theory And Automated Deduction written by Jean Goubault-Larrecq and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-11-30 with Computers categories.
Interest in computer applications has led to a new attitude to applied logic in which researchers tailor a logic in the same way they define a computer language. In response to this attitude, this text for undergraduate and graduate students discusses major algorithmic methodologies, and tableaux and resolution methods. The authors focus on first-order logic, the use of proof theory, and the computer application of automated searches for proofs of mathematical propositions. Annotation copyrighted by Book News, Inc., Portland, OR
Basic Proof Theory
DOWNLOAD
Author : A. S. Troelstra
language : en
Publisher: Cambridge University Press
Release Date : 2000-07-27
Basic Proof Theory written by A. S. Troelstra and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-07-27 with Computers categories.
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Proof Theory
DOWNLOAD
Author : Vincent F. Hendricks
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Proof Theory written by Vincent F. Hendricks and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Philosophy categories.
hiS volume in the Synthese Library Series is the result of a conference T held at the University of Roskilde, Denmark, October 31st-November 1st, 1997. The aim was to provide a forum within which philosophers, math ematicians, logicians and historians of mathematics could exchange ideas pertaining to the historical and philosophical development of proof theory. Hence the conference was called Proof Theory: History and Philosophical Significance. To quote from the conference abstract: Proof theory was developed as part of Hilberts Programme. According to Hilberts Programme one could provide mathematics with a firm and se cure foundation by formalizing all of mathematics and subsequently prove consistency of these formal systems by finitistic means. Hence proof theory was developed as a formal tool through which this goal should be fulfilled. It is well known that Hilbert's Programme in its original form was unfeasible mainly due to Gtldel's incompleteness theorems. Additionally it proved impossible to formalize all of mathematics and impossible to even prove the consistency of relatively simple formalized fragments of mathematics by finitistic methods. In spite of these problems, Gentzen showed that by extending Hilbert's proof theory it would be possible to prove the consistency of interesting formal systems, perhaps not by finitis tic methods but still by methods of minimal strength. This generalization of Hilbert's original programme has fueled modern proof theory which is a rich part of mathematical logic with many significant implications for the philosophy of mathematics.
Proof Theory
DOWNLOAD
Author : Katalin Bimbo
language : en
Publisher: CRC Press
Release Date : 2014-08-20
Proof Theory written by Katalin Bimbo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-20 with Mathematics categories.
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi
An Introduction To Proof Theory
DOWNLOAD
Author : Paolo Mancosu
language : en
Publisher: Oxford University Press
Release Date : 2021-08-12
An Introduction To Proof Theory written by Paolo Mancosu and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-12 with Philosophy categories.
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Mathematical Intuitionism Introduction To Proof Theory
DOWNLOAD
Author : Al'bert Grigor'evi_ Dragalin
language : en
Publisher: American Mathematical Soc.
Release Date : 1988-12-31
Mathematical Intuitionism Introduction To Proof Theory written by Al'bert Grigor'evi_ Dragalin and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-12-31 with Mathematics categories.
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.
Handbook Of Proof Theory
DOWNLOAD
Author : S.R. Buss
language : en
Publisher: Elsevier
Release Date : 1998-07-09
Handbook Of Proof Theory written by S.R. Buss and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-07-09 with Mathematics categories.
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Proof Theory
DOWNLOAD
Author : Wolfram Pohlers
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-10-01
Proof Theory written by Wolfram Pohlers and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-01 with Mathematics categories.
The kernel of this book consists of a series of lectures on in?nitary proof theory which I gave during my time at the Westfalische ̈ Wilhelms–Universitat ̈ in Munster ̈ . It was planned as a successor of Springer Lecture Notes in Mathematics 1407. H- ever, when preparing it, I decided to also include material which has not been treated in SLN 1407. Since the appearance of SLN 1407 many innovations in the area of - dinal analysis have taken place. Just to mention those of them which are addressed in this book: Buchholz simpli?ed local predicativity by the invention of operator controlled derivations (cf. Chapter 9, Chapter 11); Weiermann detected applications of methods of impredicative proof theory to the characterization of the provable recursive functions of predicative theories (cf. Chapter 10); Beckmann improved Gentzen’s boundedness theorem (which appears as Stage Theorem (Theorem 6. 6. 1) in this book) to Theorem 6. 6. 9, a theorem which is very satisfying in itself - though its real importance lies in the ordinal analysis of systems, weaker than those treated here. Besides these innovations I also decided to include the analysis of the theory (? –REF) as an example of a subtheory of set theory whose ordinal analysis only 2 0 requires a ?rst step into impredicativity. The ordinal analysis of(? –FXP) of non- 0 1 0 monotone? –de?nable inductive de?nitions in Chapter 13 is an application of the 1 analysis of(? –REF).
Proof Theory In Computer Science
DOWNLOAD
Author : Reinhard Kahle
language : en
Publisher: Springer
Release Date : 2003-06-30
Proof Theory In Computer Science written by Reinhard Kahle and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-30 with Computers categories.
Proof theory has long been established as a basic discipline of mathematical logic. It has recently become increasingly relevant to computer science. The - ductive apparatus provided by proof theory has proved useful for metatheoretical purposes as well as for practical applications. Thus it seemed to us most natural to bring researchers together to assess both the role proof theory already plays in computer science and the role it might play in the future. The form of a Dagstuhl seminar is most suitable for purposes like this, as Schloß Dagstuhl provides a very convenient and stimulating environment to - scuss new ideas and developments. To accompany the conference with a proc- dings volume appeared to us equally appropriate. Such a volume not only ?xes basic results of the subject and makes them available to a broader audience, but also signals to the scienti?c community that Proof Theory in Computer Science (PTCS) is a major research branch within the wider ?eld of logic in computer science.
Proof Theory And Logical Complexity
DOWNLOAD
Author : Jean-Yves Girard
language : en
Publisher:
Release Date : 1987
Proof Theory And Logical Complexity written by Jean-Yves Girard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987 with Mathematics categories.
"This long awaited book ... fills essential gaps in monographic literature on proof theory and prepares readers for volume 2 (to be published soon) containing an exposition of the author's new approach to proof theory for higher order logic. Even in traditional topics, like Gödel's completeness and incompleteness theorems, and cut elemination, accents are different compared to books by Kleene, Schütte, or Takeuti, which are strongly influenced by Hilbert's aim: to make mathematical theories (number theory, analysis etc.) more reliable by transformations of formalized proofs. The author is much closer to the approach of G. Kreisel (to whom this book is dedicated): Hilbert's program needs drastic rethinking and one of the main tasks is in finding mathematical applications of the results obtained in proof theory. Possibly, it is not a pure chance that the system of second order functionals developed by the author in his normalization proof for second order logic (was rediscovered and) became a tool in computer science. The book under review presents not only this material, but also other results by the author which became a part of modern proof theory including analysis of cut-free provability in terms of 3-valued logic. The material which was not previously covered (at least in such detail) in proof-theoretic monographs includes strong normalizability proofs (after Tait and Gandy), applications of reflection principles, recursive ordinals, operations on local correct (but not necessarily well-founded) omega-derivations, no-counterexample interpretation, using proof theory to extract combinatory estimates with a detailed treatment of van der Waerden's theorem. This is a difficult, but rewarding postgraduate-level textbook. The author does not avoid philosophical questions, and such discussion supported by theorems is certainly fruitful, although the reviewer would not agree with all author's conclusions"-- description of volume 1.