Download Programming With Tensorflow - eBooks (PDF)

Programming With Tensorflow


Programming With Tensorflow
DOWNLOAD

Download Programming With Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Programming With Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Programming With Tensorflow


Programming With Tensorflow
DOWNLOAD
Author : Kolla Bhanu Prakash
language : en
Publisher: Springer Nature
Release Date : 2021-01-22

Programming With Tensorflow written by Kolla Bhanu Prakash and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-22 with Technology & Engineering categories.


This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for deep learning, Natural Language Processing (NLP), speech recognition, and general predictive analytics. The book provides a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. The authors begin by working through some basic examples in TensorFlow before diving deeper into topics such as CNN, RNN, LSTM, and GNN. The book is written for those who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. The authors demonstrate TensorFlow projects on Single Board Computers (SBCs).



Neural Network Programming With Tensorflow


Neural Network Programming With Tensorflow
DOWNLOAD
Author : Manpreet Singh Ghotra
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-10

Neural Network Programming With Tensorflow written by Manpreet Singh Ghotra and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-10 with Computers categories.


Neural Networks and their implementation decoded with TensorFlow About This Book Develop a strong background in neural network programming from scratch, using the popular Tensorflow library. Use Tensorflow to implement different kinds of neural networks – from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more. A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation. Who This Book Is For This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you. What You Will Learn Learn Linear Algebra and mathematics behind neural network. Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks. Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points Learn through real world examples like Sentiment Analysis. Train different types of generative models and explore autoencoders. Explore TensorFlow as an example of deep learning implementation. In Detail If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that. You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders. By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow constructs. Style and Approach This book is designed to give you just the right number of concepts to back up the examples. With real-world use cases and problems solved, this book is a handy guide for you. Each concept is backed by a generic and real-world problem, followed by a variation, making you independent and able to solve any problem with neural networks. All of the content is demystified by a simple and straightforward approach.



Learn Tensorflow 2 0


Learn Tensorflow 2 0
DOWNLOAD
Author : Pramod Singh
language : en
Publisher: Apress
Release Date : 2019-12-17

Learn Tensorflow 2 0 written by Pramod Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-17 with Computers categories.


Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0. It also demonstrates how to build models using customer estimators. Further, it explains how to use TensorFlow 2.0 API to build machine learning and deep learning models for image classification using the standard as well as custom parameters. You'll review sequence predictions, saving, serving, deploying, and standardized datasets, and then deploy these models to production. All the code presented in the book will be available in the form of executable scripts at Github which allows you to try out the examples and extend them in interesting ways. What You'll Learn Review the new features of TensorFlow 2.0 Use TensorFlow 2.0 to build machine learning and deep learning models Perform sequence predictions using TensorFlow 2.0 Deploy TensorFlow 2.0 models with practical examples Who This Book Is For Data scientists, machine and deep learning engineers.



Python Programming


Python Programming
DOWNLOAD
Author : Frank Millstein
language : en
Publisher: Frank Millstein
Release Date : 2020-09-07

Python Programming written by Frank Millstein and has been published by Frank Millstein this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-07 with Computers categories.


Programming With Python - 8 BOOK BUNDLE!! Deep Learning With Keras Here Is A Preview Of What You’ll Learn Here… The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models And much more... Convolutional Neural Networks In Python Here Is A Preview Of What You’ll Learn Here… Convolutional neural networks structure How convolutional neural networks actually work Convolutional neural networks applications The importance of convolution operator How to build a simple image classification CNN And much, much more! Python Machine Learning Here Is A Preview Of What You’ll Learn Here… Basics behind machine learning techniques Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests Solving multi-clasisfication problems Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn Solving multi-label classification problems And much, much more... Machine Learning With TensorFlow Here Is A Preview Of What You’ll Learn Here… What is machine learning Main uses and benefits of machine learning How to get started with TensorFlow, installing and loading data Data flow graphs and basic TensorFlow expressions Creating MNIST classifiers with one-hot transformation And much, much more... Data Analytics With Python Here Is A Preview Of What You’ll Learn Here… What is Data Analytics? Difference between data science, big data and data analytics Installing python Python data structures Pandas series and data frames And much, much more... Natural Language Processing With Python Here Is A Preview Of What You’ll Learn Here… Challenges of natural language processing How natural language processing works? Part of speech tagging N-grams Running natural language processing script And much, much more... DevOps Handbook Here Is A Preview Of What You’ll Learn Here… Issues and mistakes plaguing software development What is software development life cycle? How software development life cycle works? The origins of devops Testing and building systems tools And much, much more... DevOps Adoption Here Is A Preview Of What You’ll Learn Here… Devops definition Overcoming traditional dev and ops Devops and security integration Devops success factors Is devops right for you? And much, much more... Get this book bundle NOW and SAVE money!



Beginning Deep Learning With Tensorflow


Beginning Deep Learning With Tensorflow
DOWNLOAD
Author : Liangqu Long
language : en
Publisher: Apress
Release Date : 2022-03-07

Beginning Deep Learning With Tensorflow written by Liangqu Long and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-07 with Computers categories.


Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners. You’ll start with an introduction to AI, where you’ll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you’ll jump into simple classification programs for hand-writing analysis. Once you’ve tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you’ll get into the heavy lifting of programming neural networks and working with a wide variety of neural network types such as GANs and RNNs. Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer! What You'll Learn Develop using deep learning algorithms Build deep learning models using TensorFlow 2 Create classification systems and other, practical deep learning applications Who This Book Is For Students, programmers, and researchers with no experience in deep learning who want to build up their basic skillsets. Experienced machine learning programmers and engineers might also find value in updating their skills.



Deep Learning With Tensorflow


Deep Learning With Tensorflow
DOWNLOAD
Author : Giancarlo Zaccone
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-03-30

Deep Learning With Tensorflow written by Giancarlo Zaccone and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-30 with Computers categories.


Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow. Key Features Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Gain real-world contextualization through some deep learning problems concerning research and application Book Description Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects. What you will learn Apply deep machine intelligence and GPU computing with TensorFlow Access public datasets and use TensorFlow to load, process, and transform the data Discover how to use the high-level TensorFlow API to build more powerful applications Use deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications Who this book is for The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.



Deep Learning With Swift For Tensorflow


Deep Learning With Swift For Tensorflow
DOWNLOAD
Author : Rahul Bhalley
language : en
Publisher:
Release Date : 2021

Deep Learning With Swift For Tensorflow written by Rahul Bhalley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Artificial intelligence categories.


About this book Discover more insight about deep learning algorithms with Swift for TensorFlow. The Swift language was designed by Apple for optimized performance and development whereas TensorFlow library was designed by Google for advanced machine learning research. Swift for TensorFlow is a combination of both with support for modern hardware accelerators and more. This book covers the deep learning concepts from fundamentals to advanced research. It also introduces the Swift language for beginners in programming. This book is well suited for newcomers and experts in programming and deep learning alike. After reading this book you should be able to program various state-of-the-art deep learning algorithms yourself. The book covers foundational concepts of machine learning. It also introduces the mathematics required to understand deep learning. Swift language is introduced such that it allows beginners and researchers to understand programming and easily transit to Swift for TensorFlow, respectively. You will understand the nuts and bolts of building and training neural networks, and build advanced algorithms. What You'll Learn: Understand deep learning concepts; Program various deep learning algorithms; Run the algorithms in cloud. Who This Book Is For: Newcomers to programming and/or deep learning, and experienced developers; Experienced deep learning practitioners and researchers who desire to work in user space instead of library space with a same programming language without compromising the speed.



Tensorflow 2 0 Quick Start Guide


Tensorflow 2 0 Quick Start Guide
DOWNLOAD
Author : Tony Holdroyd
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-03-29

Tensorflow 2 0 Quick Start Guide written by Tony Holdroyd and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-29 with Computers categories.


Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks. Key FeaturesTrain your own models for effective prediction, using high-level Keras API Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networksGet acquainted with some new practices introduced in TensorFlow 2.0 AlphaBook Description TensorFlow is one of the most popular machine learning frameworks in Python. With this book, you will improve your knowledge of some of the latest TensorFlow features and will be able to perform supervised and unsupervised machine learning and also train neural networks. After giving you an overview of what's new in TensorFlow 2.0 Alpha, the book moves on to setting up your machine learning environment using the TensorFlow library. You will perform popular supervised machine learning tasks using techniques such as linear regression, logistic regression, and clustering. You will get familiar with unsupervised learning for autoencoder applications. The book will also show you how to train effective neural networks using straightforward examples in a variety of different domains. By the end of the book, you will have been exposed to a large variety of machine learning and neural network TensorFlow techniques. What you will learnUse tf.Keras for fast prototyping, building, and training deep learning neural network modelsEasily convert your TensorFlow 1.12 applications to TensorFlow 2.0-compatible filesUse TensorFlow to tackle traditional supervised and unsupervised machine learning applicationsUnderstand image recognition techniques using TensorFlowPerform neural style transfer for image hybridization using a neural networkCode a recurrent neural network in TensorFlow to perform text-style generationWho this book is for Data scientists, machine learning developers, and deep learning enthusiasts looking to quickly get started with TensorFlow 2 will find this book useful. Some Python programming experience with version 3.6 or later, along with a familiarity with Jupyter notebooks will be an added advantage. Exposure to machine learning and neural network techniques would also be helpful.



Tensorflow For Dummies


Tensorflow For Dummies
DOWNLOAD
Author : Matthew Scarpino
language : en
Publisher: John Wiley & Sons
Release Date : 2018-03-07

Tensorflow For Dummies written by Matthew Scarpino and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-07 with Computers categories.


Become a machine learning pro! Google TensorFlow has become the darling of financial firms and research organizations, but the technology can be intimidating and the learning curve is steep. Luckily, TensorFlow For Dummies is here to offer you a friendly, easy-to-follow book on the subject. Inside, you’ll find out how to write applications with TensorFlow, while also grasping the concepts underlying machine learning—all without ever losing your cool! Machine learning has become ubiquitous in modern society, and its applications include language translation, robotics, handwriting analysis, financial prediction, and image recognition. TensorFlow is Google's preeminent toolset for machine learning, and this hands-on guide makes it easy to understand, even for those without a background in artificial intelligence. Install TensorFlow on your computer Learn the fundamentals of statistical regression and neural networks Visualize the machine learning process with TensorBoard Perform image recognition with convolutional neural networks (CNNs) Analyze sequential data with recurrent neural networks (RNNs) Execute TensorFlow on mobile devices and the Google Cloud Platform (GCP) If you’re a manager or software developer looking to use TensorFlow for machine learning, this is the book you’ll want to have close by.



Python Machine Learning For Beginners


Python Machine Learning For Beginners
DOWNLOAD
Author : Finn Sanders
language : en
Publisher: Roland Bind
Release Date : 2019-05-22

Python Machine Learning For Beginners written by Finn Sanders and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Computers categories.


Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin? This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it. If you have used a search engine, worked with photo recognition, or done speech recognition devices on your phone, then you have worked with machine learning. And if you combine it with the Python programming language, it is faster, more powerful, and easier (even for beginners) to create your own programs today. Python is considered the ultimate coding language for beginners, but once you start to use it, you will never be able to tell. Many of the best programs out there use this language behind them, and if you are a beginner who is ready to learn, this is a great place to start. If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you. ★★Some of the topics that we will discuss include★★ ♦ The Fundamentals of Machine Learning, Deep learning, And Neural Networks ♦ How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You ♦ How To Master Neural Network Implementation Using Different Libraries ♦ How Random Forest Algorithms Are Able To Help Out With Machine Learning ♦ How To Uncover Hidden Patterns And Structures With Clustering ♦ How Recurrent Neural Networks Work And When To Use ♦ The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning ♦ And Much More! This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like. If you want to learn more about how to make the best programs with Python Machine learning, buy the book today!