Predictive Analytics With Matlab Machine Learning Techniques
DOWNLOAD
Download Predictive Analytics With Matlab Machine Learning Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Analytics With Matlab Machine Learning Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Predictive Analytics With Matlab Machine Learning Techniques
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-05
Predictive Analytics With Matlab Machine Learning Techniques written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05 with categories.
Predictive analytics is an area of statistics that deals with extracting information from data and using it to predict trends and behavior patterns. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future. For example, identifying suspects after a crime has been committed, or credit card fraud as it occurs. The core of predictive analytics relies on capturing relationships between explanatory variables and the predicted variables from past occurrences, and exploiting them to predict the unknown outcome. It is important to note, however, that the accuracy and usability of results will depend greatly on the level of data analysis and the quality of assumptions. This books develops the important predictive models like Support Vector Machine, Nearest Neighbors. KNN Classifiers, Support Vector Machine Regression, Gaussian Process Regresion, Classification and Regression Trees, Regression Models with Neural Networks, Neural Networks Time Series Prediction and Classification with Naive Bayes.
Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : CESAR PEREZ LOPEZ
language : en
Publisher: CESAR PEREZ
Release Date : 2020-09-06
Predictive Analytics With Neural Networks Using Matlab written by CESAR PEREZ LOPEZ and has been published by CESAR PEREZ this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-06 with Computers categories.
Predictive analytics encompasses a variety of statistical techniques from predictive modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future or otherwise unknown events. Different work fields with neural networks and predictive analytics techniques are listed below: The multilayer perceptron (MLP), A radial basis function (RBF), Support vector machines (SVM), Fit regression models with neural networks, Time series neural networks, Hopfield and linear neural networks, Generalized regression and LVQ neural networks, Adaptative linear filters and non linear problems
Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-27
Predictive Analytics With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-27 with categories.
Predictive analytics encompasses a variety of statistical techniques from predictive modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future or otherwise unknown events. In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, guiding decision making for candidate transactions. The defining functional effect of these technical approaches is that predictive analytics provides a predictive score (probability) for each individual (customer, employee, healthcare patient, product SKU, vehicle, component, machine, or other organizational unit) in order to determine, inform, or influence organizational processes that pertain across large numbers of individuals, such as in marketing, credit risk assessment, fraud detection, manufacturing, healthcare, and government operations including law enforcement. Predictive analytics is used in actuarial science, marketing, financial services, insurance, telecommunications, retail, travel, healthcare, child protection, pharmaceuticals, capacity planning and other fields. One of the best-known applications is credit scoring, which is used throughout financial services. Scoring models process a customer's credit history, loan application, customer data, etc., in order to rank-order individuals by their likelihood of making future credit payments on time. Neural networks are nonlinear sophisticated modeling techniques that are able to model complex functions. They can be applied to problems of prediction, classification or control in a wide spectrum of fields such as finance, cognitive psychology/neuroscience, medicine, engineering, and physics. Neural networks are used when the exact nature of the relationship between inputs and output is not known. A key feature of neural networks is that they learn the relationship between inputs and output through training. There are three types of training used by different neural networks: supervised and unsupervised training and reinforcement learning, with supervised being the most common one. Some examples of neural network training techniques are backpropagation, quick propagation, conjugate gradient descent, projection operator, Delta-Bar-Delta etc. Some unsupervised network architectures are multilayer perceptrons, Kohonen networks, Hopfield networks, etc. Different work fields with neural networks and predictive analytics techniques are developed in this book: -The multilayer perceptron (MLP) -A radial basis function (RBF) i -Fit regression models with neural networks. -Time series neural networks. Modeling and prediction with NARX and time delay networks. -Hopfield and linear neural networks. -Generalized regression and LVQ neural networks. -Adaptative linear filters and non linear problems. Used for linear and nonlinear prediction
Data Analytics For Smart Grids Applications A Key To Smart City Development
DOWNLOAD
Author : Devendra Kumar Sharma
language : en
Publisher: Springer Nature
Release Date : 2023-11-29
Data Analytics For Smart Grids Applications A Key To Smart City Development written by Devendra Kumar Sharma and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-29 with Computers categories.
This book introduces big data analytics and corresponding applications in smart grids. The characterizations of big data, smart grids as well as a huge amount of data collection are first discussed as a prelude to illustrating the motivation and potential advantages of implementing advanced data analytics in smart grids. Basic concepts and the procedures of typical data analytics for general problems are also discussed. The advanced applications of different data analytics in smart grids are addressed as the main part of this book. By dealing with a huge amount of data from electricity networks, meteorological information system, geographical information system, etc., many benefits can be brought to the existing power system and improve customer service as well as social welfare in the era of big data. However, to advance the applications of big data analytics in real smart grids, many issues such as techniques, awareness, and synergies have to be overcome. This book provides deployment of semantic technologies in data analysis along with the latest applications across the field such as smart grids.
Data Mining Big Data Analytics And Deep Learning With Matlab
DOWNLOAD
Author : C Perez
language : en
Publisher:
Release Date : 2019-05-24
Data Mining Big Data Analytics And Deep Learning With Matlab written by C Perez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-24 with categories.
Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data. In a simple case, there might be two sets of neurons: ones that receive an input signal and ones that send an output signal. When the input layer receives an input it passes on a modified version of the input to the next layer. In a deep network, there are many layers between the input and output (and the layers are not made of neurons but it can help to think of it that way), allowing the algorithm to use multiple processing layers, composed of multiple linear and non-linear transformations.Deep learning is part of a broader family of machine learning methods based on learning representations of data. An observation (e.g., an image) can be represented in many ways such as a vector of intensity values per pixel, or in a more abstract way as a set of edges, regions of particular shape, etc. Some representations are better than others at simplifying the learning task (e.g., face recognition or facial expression recognition). One of the promises of deep learning is replacing handcrafted features with efficient algorithms for unsupervised or semi-supervised feature learning and hierarchical feature extraction. Research in this area attempts to make better representations and create models to learn these representations from large-scale unlabeled data. Some of the representations are inspired by advances in neuroscience and are loosely based on interpretation of information processing and communication patterns in a nervous system, such as neural coding which attempts to define a relationship between various stimuli and associated neuronal responses in the brain. Various deep learning architectures such as deep neural networks, convolutional deep neural networks, deep belief networks and recurrent neural networks have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks.Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data.To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB.
Data Analytics For Management Banking And Finance
DOWNLOAD
Author : Foued Saâdaoui
language : en
Publisher: Springer Nature
Release Date : 2023-09-19
Data Analytics For Management Banking And Finance written by Foued Saâdaoui and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-19 with Business & Economics categories.
This book is a practical guide on the use of various data analytics and visualization techniques and tools in the banking and financial sectors. It focuses on how combining expertise from interdisciplinary areas, such as machine learning and business analytics, can bring forward a shared vision on the benefits of data science from the research point of view to the evaluation of policies. It highlights how data science is reshaping the business sector. It includes examples of novel big data sources and some successful applications on the use of advanced machine learning, natural language processing, networks analysis, and time series analysis and forecasting, among others, in the banking and finance. It includes several case studies where innovative data science models is used to analyse, test or model some crucial phenomena in banking and finance. At the same time, the book is making an appeal for a further adoption of these novel applications in the field of economics and finance so that they can reach their full potential and support policy-makers and the related stakeholders in the transformational recovery of our societies. The book is for stakeholders involved in research and innovation in the banking and financial sectors, but also those in the fields of computing, IT and managerial information systems, helping through this new theory to better specify the new opportunities and challenges. The many real cases addressed in this book also provide a detailed guide allowing the reader to realize the latest methodological discoveries and the use of the different Machine Learning approaches (supervised, unsupervised, reinforcement, deep, etc.) and to learn how to use and evaluate performance of new data science tools and frameworks
Big Data Analytics For Healthcare
DOWNLOAD
Author : Pantea Keikhosrokiani
language : en
Publisher: Academic Press
Release Date : 2022-05-19
Big Data Analytics For Healthcare written by Pantea Keikhosrokiani and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-19 with Medical categories.
Big Data Analytics and Medical Information Systems presents the valuable use of artificial intelligence and big data analytics in healthcare and medical sciences. It focuses on theories, methods and approaches in which data analytic techniques can be used to examine medical data to provide a meaningful pattern for classification, diagnosis, treatment, and prediction of diseases. The book discusses topics such as theories and concepts of the field, and how big medical data mining techniques and applications can be applied to classification, diagnosis, treatment, and prediction of diseases. In addition, it covers social, behavioral, and medical fake news analytics to prevent medical misinformation and myths. It is a valuable resource for graduate students, researchers and members of biomedical field who are interested in learning more about analytic tools to support their work. - Presents theories, methods and approaches in which data analytic techniques are used for medical data - Brings practical information on how to use big data for classification, diagnosis, treatment, and prediction of diseases - Discusses social, behavioral, and medical fake news analytics for medical information systems
Machine Learning With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-27
Machine Learning With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-27 with MATLAB. categories.
Machine Learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data. MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, dynamic system modeling and control and most machine learning techniques. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders -Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) -Unsupervised learning algorithms, including self-organizing maps and competitive layers -Apps for data-fitting, pattern recognition, and clustering -Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance -Simulink(R) blocks for building and evaluating neural networks and for control systems applications
Predictive Analytics Using Matlab R For Biomedical Applications
DOWNLOAD
Author : L. Ashok Kumar
language : en
Publisher: Elsevier
Release Date : 2024-10-03
Predictive Analytics Using Matlab R For Biomedical Applications written by L. Ashok Kumar and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-03 with Science categories.
Predictive Analytics using MATLAB(R) for Biomedical Applications is a comprehensive and practical guide for biomedical engineers, data scientists, and researchers on how to use predictive analytics techniques in MATLAB(R) for solving real-world biomedical problems. The book offers a technical overview of various predictive analytics methods and covers the utilization of MATLAB(R) for implementing these techniques. It includes several case studies that demonstrate how predictive analytics can be applied to real-world biomedical problems, such as predicting disease progression, analyzing medical imaging data, and optimizing treatment outcomes.With a plethora of examples and exercises, this book is the ultimate tool for reinforcing one's knowledge and skills. - Covers various predictive analytics methods, including regression analysis, time series analysis, and machine learning algorithms, providing readers with a comprehensive understanding of the field - Provides a hands-on approach to learning predictive analytics, with a focus on practical applications in biomedical engineering - Includes several case studies that demonstrate the practical application of predictive analytics in real-world biomedical problems, such as disease progression prediction, medical imaging analysis, and treatment optimization
Artificial Intelligence Transformations For Healthcare Applications Medical Diagnosis Treatment And Patient Care
DOWNLOAD
Author : Murugan, Thangavel
language : en
Publisher: IGI Global
Release Date : 2024-07-22
Artificial Intelligence Transformations For Healthcare Applications Medical Diagnosis Treatment And Patient Care written by Murugan, Thangavel and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-22 with Medical categories.
Artificial intelligence (AI) has emerged as a transformative force across various domains, revolutionizing the way we perceive and address challenges in healthcare. The convergence of AI and healthcare holds immense promise, offering unprecedented opportunities to enhance medical diagnosis, treatment, and patient care. In today’s world, the intersection of AI and healthcare stands as one of the most promising frontiers for innovation and progress. Artificial Intelligence Transformations for Healthcare Applications: Medical Diagnosis, Treatment, and Patient Care embodies this convergence, offering a comprehensive exploration of how AI is revolutionizing various aspects of healthcare delivery. At its core, this book addresses the urgent need for more effective and efficient healthcare solutions in an increasingly complex and data-rich environment. Covering topics such as chronic disease, image classification, and precision medicine, this book is an essential resource for healthcare professionals, medical researchers, AI and machine learning specialists, healthcare administrators and executives, medical educators and students, biomedical engineers, healthcare IT professionals, policy makers and regulators, academicians, and more.