Download Predictive Analysis With Python - eBooks (PDF)

Predictive Analysis With Python


Predictive Analysis With Python
DOWNLOAD

Download Predictive Analysis With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Analysis With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Learning Predictive Analytics With Python


Learning Predictive Analytics With Python
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-02-15

Learning Predictive Analytics With Python written by Ashish Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-15 with Computers categories.


Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.



Python Data Analytics And Visualization


Python Data Analytics And Visualization
DOWNLOAD
Author : Phuong Vo.T.H
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-03-31

Python Data Analytics And Visualization written by Phuong Vo.T.H and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-31 with Computers categories.


Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn Get acquainted with NumPy and use arrays and array-oriented computing in data analysis Process and analyze data using the time-series capabilities of Pandas Understand the statistical and mathematical concepts behind predictive analytics algorithms Data visualization with Matplotlib Interactive plotting with NumPy, Scipy, and MKL functions Build financial models using Monte-Carlo simulations Create directed graphs and multi-graphs Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization—predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan Learning Predictive Analytics with Python, Ashish Kumar Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization



Python Advanced Predictive Analytics


Python Advanced Predictive Analytics
DOWNLOAD
Author : Joseph Babcock
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-12-27

Python Advanced Predictive Analytics written by Joseph Babcock and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-27 with Computers categories.


Gain practical insights by exploiting data in your business to build advanced predictive modeling applications About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Learn how to use popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Master open source Python tools to build sophisticated predictive models Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move on from a conceptual understanding of advanced analytics and become an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about predictive analytics algorithms, this book will also help you. What You Will Learn Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy Master the use of Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover advanced methods to analyze structured and unstructured data Visualize the performance of models and the insights they produce Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python. You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling. Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books: 1. Learning Predictive Analytics with Python 2. Mastering Predictive Analytics with Python Style and approach This course aims to create a smooth learning path that will teach you how to effectively perform predictive analytics using Python. Through this comprehensive course, you'll learn the basics of predictive analytics and progress to predictive modeling in the modern world.



Mastering Predictive Analytics With Python


Mastering Predictive Analytics With Python
DOWNLOAD
Author : Joseph Babcock
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-08-31

Mastering Predictive Analytics With Python written by Joseph Babcock and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-31 with Computers categories.


Exploit the power of data in your business by building advanced predictive modeling applications with Python About This Book Master open source Python tools to build sophisticated predictive models Learn to identify the right machine learning algorithm for your problem with this forward-thinking guide Grasp the major methods of predictive modeling and move beyond the basics to a deeper level of understanding Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python. What You Will Learn Gain an insight into components and design decisions for an analytical application Master the use Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover the advanced methods to analyze structured and unstructured data Find out how to deploy a machine learning model in a production environment Visualize the performance of models and the insights they produce Scale your solutions as your data grows using Python Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life Style and approach This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.



Hands On Predictive Analytics With Python


Hands On Predictive Analytics With Python
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-28

Hands On Predictive Analytics With Python written by Alvaro Fuentes and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-28 with Computers categories.


Step-by-step guide to build high performing predictive applications Key FeaturesUse the Python data analytics ecosystem to implement end-to-end predictive analytics projectsExplore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanationsLearn to deploy a predictive model's results as an interactive applicationBook Description Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages. The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model. Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics. By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming. What you will learnGet to grips with the main concepts and principles of predictive analyticsLearn about the stages involved in producing complete predictive analytics solutionsUnderstand how to define a problem, propose a solution, and prepare a datasetUse visualizations to explore relationships and gain insights into the datasetLearn to build regression and classification models using scikit-learnUse Keras to build powerful neural network models that produce accurate predictionsLearn to serve a model's predictions as a web applicationWho this book is for This book is for data analysts, data scientists, data engineers, and Python developers who want to learn about predictive modeling and would like to implement predictive analytics solutions using Python's data stack. People from other backgrounds who would like to enter this exciting field will greatly benefit from reading this book. All you need is to be proficient in Python programming and have a basic understanding of statistics and college-level algebra.



Modeling Techniques In Predictive Analytics With Python And R


Modeling Techniques In Predictive Analytics With Python And R
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29

Modeling Techniques In Predictive Analytics With Python And R written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more



Predictive Analysis With Python


Predictive Analysis With Python
DOWNLOAD
Author : Albert Torres
language : en
Publisher:
Release Date : 2021-04-22

Predictive Analysis With Python written by Albert Torres and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-22 with categories.


!! 55% OFF for Bookstores!! NOW at 36.95 instead of 47.95 !! Buy it NOW and let your customers get addicted to this awesome book!



Predictive Analysis With Python 2025 Edition


Predictive Analysis With Python 2025 Edition
DOWNLOAD
Author : Diego Rodrigues
language : en
Publisher: Diego Rodrigues
Release Date : 2025-01-01

Predictive Analysis With Python 2025 Edition written by Diego Rodrigues and has been published by Diego Rodrigues this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-01 with Business & Economics categories.


Welcome to "PREDICTIVE ANALYSIS WITH PYTHON: Anticipate Outcomes with Statistical Models - 2025 Edition," an essential work for those looking to transform data into powerful predictions and strategic decisions. Written by Diego Rodrigues, a best-selling author with over 180 books published in six languages, this guide combines theory and practice to help you master predictive analysis in a data-driven world. In this book, Python is your primary tool, a versatile language that simplifies everything from data exploration to the application of advanced models. Throughout the chapters, you’ll navigate fundamental topics and cutting-edge techniques such as machine learning, data visualization, hyperparameter optimization, and deploying models into production. The book includes practical case studies reflecting real-world scenarios, enabling you to apply your knowledge in areas like finance, healthcare, marketing, and more. From foundational statistics to modern frameworks like Scikit-learn and TensorFlow, each chapter is designed to cater to both beginners and experienced professionals looking to expand their skill set. Learn how to build reliable predictive models, interpret results, and align ethics and privacy with data analysis. Prepare for a dynamic and interactive learning experience, with practical examples, detailed scripts, and accessible explanations. Whether you aim to make assertive decisions, predict market trends, or optimize processes, this book will be your trusted guide to achieving excellence in predictive analysis. Invest in your future with "PREDICTIVE ANALYSIS WITH PYTHON." Your journey to mastering the art of anticipating outcomes starts now! TAGS: Python Java Linux Kali HTML ASP.NET Ada Assembly BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Regression Logistic Regression Decision Trees Random Forests AI ML K-Means Clustering Support Vector Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF AWS Google Cloud IBM Azure Databricks Nvidia Meta Power BI IoT CI/CD Hadoop Spark Dask SQLAlchemy Web Scraping MySQL Big Data Science OpenAI ChatGPT Handler RunOnUiThread() Qiskit Q# Cassandra Bigtable VIRUS MALWARE Information Pen Test Cybersecurity Linux Distributions Ethical Hacking Vulnerability Analysis System Exploration Wireless Attacks Web Application Security Malware Analysis Social Engineering Social Engineering Toolkit SET Computer Science IT Professionals Careers Expertise Library Training Operating Systems Security Testing Penetration Test Cycle Mobile Techniques Industry Global Trends Tools Framework Network Security Courses Tutorials Challenges Landscape Cloud Threats Compliance Research Technology Flutter Ionic Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Bitrise Actions Material Design Cupertino Fastlane Appium Selenium Jest Visual Studio AR VR sql mysql



Python For Predictive Analytics In Finance


Python For Predictive Analytics In Finance
DOWNLOAD
Author : J.P.Morgan
language : en
Publisher: J.P.Morgan
Release Date :

Python For Predictive Analytics In Finance written by J.P.Morgan and has been published by J.P.Morgan this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Python for Predictive Analytics in Finance: Anticipate Market Movements Stay Ahead of the Market with Predictive Analytics Using Python! Unlock the power of predictive analytics with Python for Predictive Analytics in Finance: Anticipate Market Movements. This essential guide equips Python programmers, web developers, web application developers, students, and trading enthusiasts with the skills to forecast market trends and make proactive investment decisions, reducing the risks associated with market volatility. Key Features: Comprehensive Insights: Dive deep into predictive analytics using Python. Learn how to leverage powerful tools and techniques to perform financial analytics with Python, giving you a competitive edge in the financial world. Real-World Applications: Explore practical examples and case studies that show how to apply predictive analytics for finance. Understand how to use Python to anticipate market movements and make data-driven investment decisions. Step-by-Step Approach: This book provides clear, step-by-step instructions, making complex concepts accessible to both beginners and experienced programmers. Build your knowledge gradually with detailed explanations and practical exercises on learning predictive analytics with Python. Risk Reduction: Learn how predictive analytics can help you reduce the risks associated with market volatility. Make proactive investment decisions based on data-driven insights rather than speculation. Advanced Techniques: Master advanced techniques in predictive analytics, including machine learning algorithms, statistical modeling, and data visualization. Equip yourself with the skills needed to tackle complex financial data and predict market trends using Python libraries for predictive analytics. Why Choose This Book? Tailored for Your Needs: Whether you're a Python programmer looking to expand your skillset, a web developer interested in financial applications, a student exploring data analysis, or a trading enthusiast seeking to improve your investment strategies, this book is designed with you in mind. Learn how to use Python for financial analysis and become a proficient financial analyst. Written in an engaging and persuasive tone, this book not only teaches you the technical skills but also inspires you to apply them effectively. Transform your approach to financial data with análise financeira com Python and anticipate market movements with confidence. Informed Investment Decisions: By the end of this book, you'll have the confidence and skills to analyze financial data with Python for informed investment decisions. Maximize your returns and stay ahead of the competition by leveraging Python for predictive analytics in finance. Learn Essential Skills: Understand how to gather and preprocess financial data, implement predictive models, and visualize your results. Gain expertise in using Python libraries and tools for financial analysis, and perform investment data analytics with Python. Don't miss out on the opportunity to enhance your predictive analytics skills. Get your copy of Python for Predictive Analytics in Finance: Anticipate Market Movements today and start your journey towards financial mastery! Click "Buy Now" to Stay Ahead of the Market with Predictive Analytics Using Python!



Become A Python Data Analyst


Become A Python Data Analyst
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Become A Python Data Analyst written by Alvaro Fuentes and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book