Parallel And High Performance Programming With Python Unlock Parallel And Concurrent Programming In Python Using Multithreading Cuda Pytorch And Dask
DOWNLOAD
Download Parallel And High Performance Programming With Python Unlock Parallel And Concurrent Programming In Python Using Multithreading Cuda Pytorch And Dask PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel And High Performance Programming With Python Unlock Parallel And Concurrent Programming In Python Using Multithreading Cuda Pytorch And Dask book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Parallel And High Performance Programming With Python
DOWNLOAD
Author : Fabio Nelli
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2023-04-13
Parallel And High Performance Programming With Python written by Fabio Nelli and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-13 with Computers categories.
Unleash the capabilities of Python and its libraries for solving high performance computational problems. KEY FEATURES ● Explores parallel programming concepts and techniques for high-performance computing. ● Covers parallel algorithms, multiprocessing, distributed computing, and GPU programming. ● Provides practical use of popular Python libraries/tools like NumPy, Pandas, Dask, and TensorFlow. DESCRIPTION This book will teach you everything about the powerful techniques and applications of parallel computing, from the basics of parallel programming to the cutting-edge innovations shaping the future of computing. The book starts with an introduction to parallel programming and the different types of parallelism, including parallel programming with threads and processes. The book then delves into asynchronous programming, distributed Python, and GPU programming with Python, providing you with the tools you need to optimize your programs for distributed and high-performance computing. The book also covers a wide range of applications for parallel computing, including data science, artificial intelligence, and other complex scientific simulations. You will learn about the challenges and opportunities presented by parallel computing for these applications and how to overcome them. By the end of the book, you will have insights into the future of parallel computing, the latest research and developments in the field, and explore the exciting possibilities that lie ahead. WHAT WILL YOU LEARN ● Build faster, smarter, and more efficient applications for data analysis, machine learning, and scientific computing ● Implement parallel algorithms in Python ● Best practices for designing, implementing, and scaling parallel programs in Python WHO IS THIS BOOK FOR? This book is aimed at software developers who wish to take their careers to the next level by improving their skills and learning about concurrent and parallel programming. It is also intended for Python developers who aspire to write fast and efficient programs, and for students who wish to learn the fundamentals of parallel computing and its practical uses. TABLE OF CONTENTS 1. Introduction to Parallel Programming 2. Building Multithreaded Programs 3. Working with Multiprocessing and mpi4py Library 4. Asynchronous Programming with AsyncIO 5. Realizing Parallelism with Distributed Systems 6. Maximizing Performance with GPU Programming using CUDA 7. Embracing the Parallel Computing Revolution 8. Scaling Your Data Science Applications with Dask 9. Exploring the Potential of AI with Parallel Computing 10. Hands-on Applications of Parallel Computing
Parallel And High Performance Programming With Python Unlock Parallel And Concurrent Programming In Python Using Multithreading Cuda Pytorch And Dask
DOWNLOAD
Author : Fabio Nelli
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2023-04-12
Parallel And High Performance Programming With Python Unlock Parallel And Concurrent Programming In Python Using Multithreading Cuda Pytorch And Dask written by Fabio Nelli and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-12 with Computers categories.
Unleash the capabilities of Python and its libraries for solving high performance computational problems. Key Features ● Explores parallel programming concepts and techniques for high-performance computing. ● Covers parallel algorithms, multiprocessing, distributed computing, and GPU programming. ● Provides practical use of popular Python libraries/tools like NumPy, Pandas, Dask, and TensorFlow. Book Description This book will teach you everything about the powerful techniques and applications of parallel computing, from the basics of parallel programming to the cutting-edge innovations shaping the future of computing. The book starts with an introduction to parallel programming and the different types of parallelism, including parallel programming with threads and processes. The book then delves into asynchronous programming, distributed Python, and GPU programming with Python, providing you with the tools you need to optimize your programs for distributed and high-performance computing. The book also covers a wide range of applications for parallel computing, including data science, artificial intelligence, and other complex scientific simulations. You will learn about the challenges and opportunities presented by parallel computing for these applications and how to overcome them. By the end of the book, you will have insights into the future of parallel computing, the latest research and developments in the field, and explore the exciting possibilities that lie ahead. What you will learn ● Build faster, smarter, and more efficient applications for data analysis, machine learning, and scientific computing ● Implement parallel algorithms in Python ● Best practices for designing, implementing, and scaling parallel programs in Python Who is this book for? This book is aimed at software developers who wish to take their careers to the next level by improving their skills and learning about concurrent and parallel programming. It is also intended for Python developers who aspire to write fast and efficient programs, and for students who wish to learn the fundamentals of parallel computing and its practical uses. Table of Contents 1. Introduction to Parallel Programming 2. Building Multithreaded Programs 3. Working with Multiprocessing and mpi4py Library 4. Asynchronous Programming with AsyncIO 5. Realizing Parallelism with Distributed Systems 6. Maximizing Performance with GPU Programming using CUDA 7. Embracing the Parallel Computing Revolution 8. Scaling Your Data Science Applications with Dask 9. Exploring the Potential of AI with Parallel Computing 10. Hands-on Applications of Parallel Computing
Parallel Python With Dask
DOWNLOAD
Author : Tim Peters
language : en
Publisher: GitforGits
Release Date : 2023-10-19
Parallel Python With Dask written by Tim Peters and has been published by GitforGits this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-19 with Computers categories.
Unlock the Power of Parallel Python with Dask: A Perfect Learning Guide for Aspiring Data Scientists Dask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis. Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem. Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads. You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets. Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups. This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow. With this book, you'll gain practical skills to: Accelerate Python workloads with parallel mapping and task scheduling Speed up NumPy, Pandas, Scikit-Learn, PyTorch, and other libraries Build scalable machine learning pipelines for large datasets Leverage GPUs efficiently via Dask, RAPIDS and JAX Manage Dask clusters and workflows for distributed computing Streamline deep learning models with DaskML and DL frameworks Packed with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing. Table of Content Introduction to Dask Dask Fundamentals Batch Data Parallel Processing with Dask Distributed Systems and Dask Advanced Dask: APIs and Building Blocks Dask with Pandas Dask with Scikit-learn Dask and PyTorch Dask with GPUs Scaling Machine Learning Projects with Dask
Parallel Python Programming
DOWNLOAD
Author : Ethan B Carter
language : en
Publisher: Independently Published
Release Date : 2024-12-30
Parallel Python Programming written by Ethan B Carter and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-30 with Computers categories.
Unlock the full potential of your Python code with Parallel Python Programming, a comprehensive guide to mastering concurrency and multicore processing. This book is designed for developers, data scientists, and engineers looking to accelerate their applications by utilizing modern multi-core processors and parallel execution. Explore the fundamental concepts of parallel computing and how they can be seamlessly integrated into your Python projects. Through practical examples and clear explanations, you'll learn to implement parallel algorithms, optimize performance, and overcome common bottlenecks in CPU-bound tasksFrom leveraging Python's threading and multiprocessing modules to using advanced libraries like Dask and Celery, this book covers the tools, techniques, and best practices for building high-performance, scalable applications. Whether you're working on data analysis, machine learning, or computational simulations, Parallel Python Programming empowers you to speed up your workflows and harness the power of multicore systems with ease. Step into the world of parallelism and unlock the next level of performance in Python programming.
Advanced Python Programming
DOWNLOAD
Author : Dr. Gabriele Lanaro
language : en
Publisher:
Release Date : 2019
Advanced Python Programming written by Dr. Gabriele Lanaro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Python (Computer program language) categories.
Create distributed applications with clever design patterns to solve complex problems Key Features Set up and run distributed algorithms on a cluster using Dask and PySpark Master skills to accurately implement concurrency in your code Gain practical experience of Python design patterns with real-world examples Book Description This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: ? Python High Performance - Second Edition by Gabriele Lanaro ? Mastering Concurrency in Python by Quan Nguyen ? Mastering Python Design Patterns by Sakis Kasampalis What you will learn Use NumPy and pandas to import and manipulate datasets Achieve native performance with Cython and Numba Write asynchronous code using asyncio and RxPy Design highly scalable programs with application scaffolding Explore abstract methods to maintain data consistency Clone objects using the prototype pattern Use the adapter pattern to make incompatible interfaces compatible Employ the strategy pattern to dynamically choose an algorithm Who this book is for This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path." -- Publisher's description
Advanced Python Programming
DOWNLOAD
Author : Gabriele Lanaro
language : en
Publisher:
Release Date : 2019-02-22
Advanced Python Programming written by Gabriele Lanaro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-22 with Computers categories.
Create distributed applications with clever design patterns to solve complex problems Key Features Set up and run distributed algorithms on a cluster using Dask and PySpark Master skills to accurately implement concurrency in your code Gain practical experience of Python design patterns with real-world examples Book Description This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: Python High Performance - Second Edition by Gabriele Lanaro Mastering Concurrency in Python by Quan Nguyen Mastering Python Design Patterns by Sakis Kasampalis What you will learn Use NumPy and pandas to import and manipulate datasets Achieve native performance with Cython and Numba Write asynchronous code using asyncio and RxPy Design highly scalable programs with application scaffolding Explore abstract methods to maintain data consistency Clone objects using the prototype pattern Use the adapter pattern to make incompatible interfaces compatible Employ the strategy pattern to dynamically choose an algorithm Who this book is for This Learning Path is specially designed for Python developers who want to build high-performance applications and learn about single core and multi-core programming, distributed concurrency, and Python design patterns. Some experience with Python programming language will help you get the most out of this Learning Path.
Mastering Concurrency In Python
DOWNLOAD
Author : Quan Nguyen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-27
Mastering Concurrency In Python written by Quan Nguyen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-27 with Computers categories.
Immerse yourself in the world of Python concurrency and tackle the most complex concurrent programming problems Key FeaturesExplore the core syntaxes, language features and modern patterns of concurrency in PythonUnderstand how to use concurrency to keep data consistent and applications responsiveUtilize application scaffolding to design highly-scalable programs Book Description Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language What you will learnExplore the concepts of concurrency in programmingExplore the core syntax and features that enable concurrency in PythonUnderstand the correct way to implement concurrencyAbstract methods to keep the data consistent in your programAnalyze problems commonly faced in concurrent programmingUse application scaffolding to design highly-scalable programsWho this book is for This book is for developers who wish to build high-performance applications and learn about signle-core, multicore programming or distributed concurrency. Some experience with Python programming language is assumed.
Python Multiprocessing Jump Start
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: SuperFastPython
Release Date : 2022-07-28
Python Multiprocessing Jump Start written by Jason Brownlee and has been published by SuperFastPython this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-28 with Computers categories.
Unlock parallel programming in Python (and run your code on all CPUs). The multiprocessing module provides easy-to-use process-based concurrency in Python. Unlike Python threading, multiprocessing side-steps the infamous Global Interpreter Lock (GIL), allowing full parallelism in Python. This is not some random third-party library, this is an API provided in the Python standard library (already installed on your system). This is the API you need to use to make your code run faster. There's just one problem. Few developers know about it (or how to use it well). Introducing: "Python Multiprocessing Jump-Start". A new book designed to teach you the multiprocessing module in Python, super fast! You will get a fast-paced, 7-part course to get you started and make you awesome at using the multiprocessing API. Each of the 7 lessons was carefully designed to teach one critical aspect of the multiprocessing module, with explanations, code snippets and worked examples. Each lesson ends with an exercise for you to complete to confirm you understand the topic, a summary of what was learned, and links for further reading if you want to go deeper. Stop copy-pasting code from StackOverflow answers. Learn Python concurrency correctly, step-by-step.
Cuda For Engineers
DOWNLOAD
Author : Duane Storti
language : en
Publisher: Addison-Wesley Professional
Release Date : 2015-11-02
Cuda For Engineers written by Duane Storti and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-02 with Computers categories.
CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations
Concurrent And Parallel Programming In Python
DOWNLOAD
Author : Parker Dean
language : en
Publisher:
Release Date : 2025-10-09
Concurrent And Parallel Programming In Python written by Parker Dean and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-09 with Computers categories.
Elevate your Python skills with this hands-on guide to concurrent and parallel programming, empowering beginners to advanced developers to optimize code for speed and efficiency. Master multithreading for IO-bound tasks, asyncio for scalable asynchronous operations, and multiprocessing to bypass the GIL for CPU-intensive workloads. Through practical examples, real-world projects like web scrapers, data pipelines, and servers, and best practices for error handling, profiling, and scaling, build high-performance applications for web development, data processing, automation, and more.