Neural Network Applications In Control
DOWNLOAD
Download Neural Network Applications In Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Network Applications In Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Neural Network Applications In Control
DOWNLOAD
Author : George William Irwin
language : en
Publisher: IET
Release Date : 1995
Neural Network Applications In Control written by George William Irwin and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.
The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.
Applications Of Neural Adaptive Control Technology
DOWNLOAD
Author : Andrzej Dzielinski
language : en
Publisher: World Scientific
Release Date : 1997-09-02
Applications Of Neural Adaptive Control Technology written by Andrzej Dzielinski and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-09-02 with Computers categories.
This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.
Application Of Neural Networks To Adaptive Control Of Nonlinear Systems
DOWNLOAD
Author : Gee Wah Ng
language : en
Publisher:
Release Date : 1997
Application Of Neural Networks To Adaptive Control Of Nonlinear Systems written by Gee Wah Ng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Adaptive control systems categories.
This book investigates the ability of a neural network (NN) to learn how to control an unknown (nonlinear, in general) system, using data acquired on-line, that is during the process of attempting to exert control. Two algorithms are developed to train the neural network for real-time control applications. The first algorithm is known as Learning by Recursive Least Squares (LRLS) algorithm and the second algorithm is known as Integrated Gradient and Least Squares (IGLS) algorithm. The ability of these algorithms to train the NN controller for real-time control is demonstrated on practical applications and the local convergence and stability requirements of these algorithms are analysed. In addition, network topology, learning algorithms (particularly supervised learning) and neural network control strategies are presented.
Adaptive Control With Recurrent High Order Neural Networks
DOWNLOAD
Author : George A. Rovithakis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Adaptive Control With Recurrent High Order Neural Networks written by George A. Rovithakis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.
Neuro Control And Its Applications
DOWNLOAD
Author : Sigeru Omatu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Neuro Control And Its Applications written by Sigeru Omatu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, ........... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advance collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Sigeru Omatu, Marzuki Khalid, and Rubiyah Yusof have pursued the new developments of fuzzy logic and neural networks to present a series volume on neuro-control methods. As they demonstrate in the opening pages of their book, there is an explosion of interest in this field. Publication and patent activity in these areas are ever growing according to international is timely. databases and hence, this volume The presentation of the material follows a complementary pattern. Reviews of existing control techniques are given along side an exposition of the theoretical constructions of fuzzy logic controllers, and controllers based on neural networks. This is an extremely useful methodology which yields rewards in the applications chapters. The series of applications includes one very thorough experimental sequence for the control of a hot-water bath.
Neural Network Engineering In Dynamic Control Systems
DOWNLOAD
Author : Kenneth J. Hunt
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Neural Network Engineering In Dynamic Control Systems written by Kenneth J. Hunt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies, .... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Within the control community there has been much discussion of and interest in the new Emerging Technologies and Methods. Neural networks along with Fuzzy Logic and Expert Systems is an emerging methodology which has the potential to contribute to the development of intelligent control technologies. This volume of some thirteen chapters edited by Kenneth Hunt, George Irwin and Kevin Warwick makes a useful contribution to the literature of neural network methods and applications. The chapters are arranged systematically progressing from theoretical foundations, through the training aspects of neural nets and concluding with four chapters of applications. The applications include problems as diverse as oven tempera ture control, and energy/load forecasting routines. We hope this interesting but balanced mix of material appeals to a wide range of readers from the theoretician to the industrial applications engineer.
Stable Adaptive Neural Network Control
DOWNLOAD
Author : S.S. Ge
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Stable Adaptive Neural Network Control written by S.S. Ge and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Science categories.
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.
Application Of Neural Networks To Modelling And Control
DOWNLOAD
Author : G. F. Page
language : en
Publisher:
Release Date : 1993
Application Of Neural Networks To Modelling And Control written by G. F. Page and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.
Neural Networks For Control
DOWNLOAD
Author : W. Thomas Miller
language : en
Publisher: MIT Press
Release Date : 1995
Neural Networks For Control written by W. Thomas Miller and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.
Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series
Applications Of Neural Networks In High Assurance Systems
DOWNLOAD
Author : Johann M.Ph. Schumann
language : en
Publisher: Springer
Release Date : 2010-03-10
Applications Of Neural Networks In High Assurance Systems written by Johann M.Ph. Schumann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-10 with Technology & Engineering categories.
"Applications of Neural Networks in High Assurance Systems" is the first book directly addressing a key part of neural network technology: methods used to pass the tough verification and validation (V&V) standards required in many safety-critical applications. The book presents what kinds of evaluation methods have been developed across many sectors, and how to pass the tests. A new adaptive structure of V&V is developed in this book, different from the simple six sigma methods usually used for large-scale systems and different from the theorem-based approach used for simplified component subsystems.