Download Network Science With Python - eBooks (PDF)

Network Science With Python


Network Science With Python
DOWNLOAD

Download Network Science With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Network Science With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Network Science With Python


Network Science With Python
DOWNLOAD
Author : David Knickerbocker
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-02-28

Network Science With Python written by David Knickerbocker and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-28 with Computers categories.


Discover the use of graph networks to develop a new approach to data science using theoretical and practical methods with this expert guide using Python, printed in color Key FeaturesCreate networks using data points and informationLearn to visualize and analyze networks to better understand communitiesExplore the use of network data in both - supervised and unsupervised machine learning projectsPurchase of the print or Kindle book includes a free PDF eBookBook Description Network analysis is often taught with tiny or toy data sets, leaving you with a limited scope of learning and practical usage. Network Science with Python helps you extract relevant data, draw conclusions and build networks using industry-standard – practical data sets. You'll begin by learning the basics of natural language processing, network science, and social network analysis, then move on to programmatically building and analyzing networks. You'll get a hands-on understanding of the data source, data extraction, interaction with it, and drawing insights from it. This is a hands-on book with theory grounding, specific technical, and mathematical details for future reference. As you progress, you'll learn to construct and clean networks, conduct network analysis, egocentric network analysis, community detection, and use network data with machine learning. You'll also explore network analysis concepts, from basics to an advanced level. By the end of the book, you'll be able to identify network data and use it to extract unconventional insights to comprehend the complex world around you. What you will learnExplore NLP, network science, and social network analysisApply the tech stack used for NLP, network science, and analysisExtract insights from NLP and network dataGenerate personalized NLP and network projectsAuthenticate and scrape tweets, connections, the web, and data streamsDiscover the use of network data in machine learning projectsWho this book is for Network Science with Python demonstrates how programming and social science can be combined to find new insights. Data scientists, NLP engineers, software engineers, social scientists, and data science students will find this book useful. An intermediate level of Python programming is a prerequisite. Readers from both – social science and programming backgrounds will find a new perspective and add a feather to their hat.



Network Science With Python And Networkx Quick Start Guide


Network Science With Python And Networkx Quick Start Guide
DOWNLOAD
Author : Edward L. Platt
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-26

Network Science With Python And Networkx Quick Start Guide written by Edward L. Platt and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-26 with Computers categories.


Manipulate and analyze network data with the power of Python and NetworkX Key FeaturesUnderstand the terminology and basic concepts of network scienceLeverage the power of Python and NetworkX to represent data as a networkApply common techniques for working with network data of varying sizesBook Description NetworkX is a leading free and open source package used for network science with the Python programming language. NetworkX can track properties of individuals and relationships, find communities, analyze resilience, detect key network locations, and perform a wide range of important tasks. With the recent release of version 2, NetworkX has been updated to be more powerful and easy to use. If you’re a data scientist, engineer, or computational social scientist, this book will guide you in using the Python programming language to gain insights into real-world networks. Starting with the fundamentals, you’ll be introduced to the core concepts of network science, along with examples that use real-world data and Python code. This book will introduce you to theoretical concepts such as scale-free and small-world networks, centrality measures, and agent-based modeling. You’ll also be able to look for scale-free networks in real data and visualize a network using circular, directed, and shell layouts. By the end of this book, you’ll be able to choose appropriate network representations, use NetworkX to build and characterize networks, and uncover insights while working with real-world systems. What you will learnUse Python and NetworkX to analyze the properties of individuals and relationshipsEncode data in network nodes and edges using NetworkXManipulate, store, and summarize data in network nodes and edgesVisualize a network using circular, directed and shell layoutsFind out how simulating behavior on networks can give insights into real-world problemsUnderstand the ongoing impact of network science on society, and its ethical considerationsWho this book is for If you are a programmer or data scientist who wants to manipulate and analyze network data in Python, this book is perfect for you. Although prior knowledge of network science is not necessary, some Python programming experience will help you understand the concepts covered in the book easily.



Modern Graph Theory Algorithms With Python


Modern Graph Theory Algorithms With Python
DOWNLOAD
Author : Colleen M. Farrelly
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-07

Modern Graph Theory Algorithms With Python written by Colleen M. Farrelly and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-07 with Computers categories.


Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features Learn how to wrangle different types of datasets and analytics problems into networks Leverage graph theoretic algorithms to analyze data efficiently Apply the skills you gain to solve a variety of problems through case studies in Python Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWe are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You’ll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you’ll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you’ll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you’ll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.What you will learn Transform different data types, such as spatial data, into network formats Explore common network science tools in Python Discover how geometry impacts spreading processes on networks Implement machine learning algorithms on network data features Build and query graph databases Explore new frontiers in network science such as quantum algorithms Who this book is for If you’re a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations.



Network Science In Education


Network Science In Education
DOWNLOAD
Author : Catherine B. Cramer
language : en
Publisher: Springer
Release Date : 2018-10-22

Network Science In Education written by Catherine B. Cramer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-22 with Science categories.


Around the globe, there is an increasingly urgent need to provide opportunities for learners to embrace complexity; to develop the many skills and habits of mind that are relevant to today's complex and interconnected world; and to make learning more connected to our rapidly changing workplace and society. This presents an opportunity to (1) leverage new paradigms for understanding the structure and function of teaching and learning communities, and (2) to promote new approaches to developing methods, curricular materials, and resources. Network science - the study of connectivity - can play an important role in these activities, both as an important subject in teaching and learning and as a way to develop interconnected curricula. Since 2010, an international community of network science researchers and educators has come together to raise the global level of network literacy by applying ideas from network science to teaching and learning. Network Science in Education - which refers to both this community and to its activities - has evolved in response to the escalating activity in the field of network science and the need for people to be able to access the field through education channels. Network Science In Education: Transformational Approaches in Teaching and Learning appeals to both instructors and professionals, while offering case studies from a wide variety of activities that have been developed around the globe: the creation of entirely new courses and degree programs; tools for K-20 learners, teachers, and the general public; and in-depth analysis of selected programs. As network-based pedagogy and the community of practice continues to grow, we hope that the book's readers will join this vibrant network education community to build on these nascent ideas and help deepen the understanding of networks for all learners.



Platform And Model Design For Responsible Ai


Platform And Model Design For Responsible Ai
DOWNLOAD
Author : Amita Kapoor
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-04-28

Platform And Model Design For Responsible Ai written by Amita Kapoor and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-28 with Computers categories.


Craft ethical AI projects with privacy, fairness, and risk assessment features for scalable and distributed systems while maintaining explainability and sustainability Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn risk assessment for machine learning frameworks in a global landscape Discover patterns for next-generation AI ecosystems for successful product design Make explainable predictions for privacy and fairness-enabled ML training Book Description AI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it's necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you'll be able to make existing black box models transparent. You'll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You'll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you'll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You'll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics. By the end of this book, you'll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You'll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions. What you will learn Understand the threats and risks involved in ML models Discover varying levels of risk mitigation strategies and risk tiering tools Apply traditional and deep learning optimization techniques efficiently Build auditable and interpretable ML models and feature stores Understand the concept of uncertainty and explore model explainability tools Develop models for different clouds including AWS, Azure, and GCP Explore ML orchestration tools such as Kubeflow and Vertex AI Incorporate privacy and fairness in ML models from design to deployment Who this book is for This book is for experienced machine learning professionals looking to understand the risks and leakages of ML models and frameworks, and learn to develop and use reusable components to reduce effort and cost in setting up and maintaining the AI ecosystem.



The Sage Handbook Of Social Network Analysis


The Sage Handbook Of Social Network Analysis
DOWNLOAD
Author : John McLevey
language : en
Publisher: SAGE Publications Limited
Release Date : 2023-10-01

The Sage Handbook Of Social Network Analysis written by John McLevey and has been published by SAGE Publications Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-01 with Social Science categories.


This new edition of The Sage Handbook of Social Network Analysis builds on the success of its predecessor, offering a comprehensive overview of social network analysis produced by leading international scholars in the field. Brand new chapters provide both significant updates to topics covered in the first edition, as well as discussing cutting edge topics that have developed since, including new chapters on: · General issues such as social categories and computational social science; · Applications in contexts such as environmental policy, gender, ethnicity, cognition and social media and digital networks; · Concepts and methods such as centrality, blockmodeling, multilevel network analysis, spatial analysis, data collection, and beyond. By providing authoritative accounts of the history, theories and methodology of various disciplines and topics, the second edition of The SAGE Handbook of Social Network Analysis is designed to provide a state-of-the-art presentation of classic and contemporary views, and to lay the foundations for the further development of the area. PART 1: GENERAL ISSUES PART 2: APPLICATIONS PART 3: CONCEPTS AND METHODS



Handbook Of E Tourism


Handbook Of E Tourism
DOWNLOAD
Author : Zheng Xiang
language : en
Publisher: Springer Nature
Release Date : 2022-09-01

Handbook Of E Tourism written by Zheng Xiang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Business & Economics categories.


This handbook provides an authoritative and truly comprehensive overview both of the diverse applications of information and communication technologies (ICTs) within the travel and tourism industry and of e-tourism as a field of scientific inquiry that has grown and matured beyond recognition. Leading experts from around the world describe cutting-edge ideas and developments, present key concepts and theories, and discuss the full range of research methods. The coverage accordingly encompasses everything from big data and analytics to psychology, user behavior, online marketing, supply chain and operations management, smart business networks, policy and regulatory issues – and much, much more. The goal is to provide an outstanding reference that summarizes and synthesizes current knowledge and establishes the theoretical and methodological foundations for further study of the role of ICTs in travel and tourism. The handbook will meet the needs of researchers and students in various disciplines as well as industry professionals. As with all volumes in Springer’s Major Reference Works program, readers will benefit from access to a continually updated online version.



Complex Network Analysis In Python


Complex Network Analysis In Python
DOWNLOAD
Author : Dmitry Zinoviev
language : en
Publisher:
Release Date : 2018-01-29

Complex Network Analysis In Python written by Dmitry Zinoviev and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-29 with Computers categories.


Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.



The Power Of Complex Systems


The Power Of Complex Systems
DOWNLOAD
Author : Marialisa Scatà
language : en
Publisher: Springer Nature
Release Date : 2025-10-29

The Power Of Complex Systems written by Marialisa Scatà and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-29 with Computers categories.


This book offers a visionary and interdisciplinary framework for rethinking mobile communication networks through the lens of complex systems. It combines theoretical rigor with real-world relevance, integrating network science, bio-inspired computation and modeling approach, and social behavior to model and design future-proof infrastructures. The innovative approach lies in merging multilayer and higher-order topologies with artificial intelligence and behavioral dynamics, enabling systems that are adaptive, resilient, and socially aware. The book emphasizes the mutual feedback between technological design and human interactions. It addresses researchers, engineers, and policymakers engaged in 6G, digital health, smart cities, and sustainability, offering practical insights into designing intelligent, human-centric, and ethically aligned networks for a hyperconnected future.



Python For Graph And Network Analysis


Python For Graph And Network Analysis
DOWNLOAD
Author : Mohammed Zuhair Al-Taie
language : en
Publisher: Springer
Release Date : 2017-03-20

Python For Graph And Network Analysis written by Mohammed Zuhair Al-Taie and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-20 with Computers categories.


This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.