Download Modern Computer Vision With Pytorch - eBooks (PDF)

Modern Computer Vision With Pytorch


Modern Computer Vision With Pytorch
DOWNLOAD

Download Modern Computer Vision With Pytorch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Computer Vision With Pytorch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Modern Computer Vision With Pytorch


Modern Computer Vision With Pytorch
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-10

Modern Computer Vision With Pytorch written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-10 with Computers categories.


The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.



Modern Computer Vision With Pytorch


Modern Computer Vision With Pytorch
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-11-27

Modern Computer Vision With Pytorch written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.


Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.



Pytorch Deep Learning Hands On


Pytorch Deep Learning Hands On
DOWNLOAD
Author : Sherin Thomas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30

Pytorch Deep Learning Hands On written by Sherin Thomas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.



Mastering Computer Vision With Pytorch 2 0


Mastering Computer Vision With Pytorch 2 0
DOWNLOAD
Author : M. Arshad
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2025-01-17

Mastering Computer Vision With Pytorch 2 0 written by M. Arshad and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.


Unleashing the Power of Computer Vision with PyTorch 2.0. Key Features● Covers core to advanced Computer Vision topics with PyTorch 2.0's latest features and best practices.● Progressive learning path to ensure suitability for beginners and experts alike.● Tackles practical tasks like optimization, transfer learning, and edge deployment. Book DescriptionIn an era where Computer Vision has rapidly transformed industries like healthcare and autonomous systems, PyTorch 2.0 has become the leading framework for high-performance AI solutions. [Mastering Computer Vision with PyTorch 2.0] bridges the gap between theory and application, guiding readers through PyTorch essentials while equipping them to solve real-world challenges. Starting with PyTorch’s evolution and unique features, the book introduces foundational concepts like tensors, computational graphs, and neural networks. It progresses to advanced topics such as Convolutional Neural Networks (CNNs), transfer learning, and data augmentation. Hands-on chapters focus on building models, optimizing performance, and visualizing architectures. Specialized areas include efficient training with PyTorch Lightning, deploying models on edge devices, and making models production-ready. Explore cutting-edge applications, from object detection models like YOLO and Faster R-CNN to image classification architectures like ResNet and Inception. By the end, readers will be confident in implementing scalable AI solutions, staying ahead in this rapidly evolving field. Whether you're a student, AI enthusiast, or professional, this book empowers you to harness the power of PyTorch 2.0 for Computer Vision. What you will learn● Build and train neural networks using PyTorch 2.0.● Implement advanced image classification and object detection models.● Optimize models through augmentation, transfer learning, and fine-tuning.● Deploy scalable AI solutions in production and on edge devices.● Master PyTorch Lightning for efficient training workflows.● Apply real-world techniques for preprocessing, quantization, and deployment. Table of Contents1. Diving into PyTorch 2.02. PyTorch Basics3. Transitioning from PyTorch 1.x to PyTorch 2.04. Venturing into Artificial Neural Networks5. Diving Deep into Convolutional Neural Networks (CNNs)6. Data Augmentation and Preprocessing for Vision Tasks7. Exploring Transfer Learning with PyTorch8. Advanced Image Classification Models9. Object Detection Models10. Tips and Tricks to Improve Model Performance11. Efficient Training with PyTorch Lightning12. Model Deployment and Production-Ready Considerations.



Deep Learning With Pytorch


Deep Learning With Pytorch
DOWNLOAD
Author : Vishnu Subramanian
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-02-23

Deep Learning With Pytorch written by Vishnu Subramanian and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-23 with Computers categories.


Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.



Modern Machine Learning With Pytorch And Hugging Face


Modern Machine Learning With Pytorch And Hugging Face
DOWNLOAD
Author : Haider Koele
language : en
Publisher: Independently Published
Release Date : 2025-08-22

Modern Machine Learning With Pytorch And Hugging Face written by Haider Koele and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-22 with Computers categories.


Feel intimidated by machine learning, coding, or all the tech jargon? You're not alone-and you don't have to stay on the sidelines. Modern Machine Learning with PyTorch and Hugging Face: Build Intelligent Applications from Scratch is your supportive, step-by-step guide to turning curiosity into confidence-even if you've never written a single line of code before. Whether you're a complete beginner, a self-learner, or someone who's tried and stumbled, this book was written for you. Inside, you'll discover a nurturing, hands-on journey that gently walks you through every essential concept, from the basics of artificial intelligence to building real-world applications with today's most exciting tools: PyTorch and Hugging Face. What you'll gain from this book: True beginner-friendliness: No prior experience required. Every chapter uses plain language, supportive explanations, and practical projects to ease you in. Real-world skills: You'll master foundational machine learning, create image classifiers, build chatbots, and explore natural language processing using Python-all with code that's easy to follow and adapt. Step-by-step, hands-on learning: Follow along as you set up your environment, write and run your first models, and see results in real time. Each project celebrates small wins and normalizes mistakes as part of growth. Modern, in-demand frameworks: Learn not just "how" but "why" PyTorch and Hugging Face have become the go-to choices for AI developers, and how you can leverage them for everything from computer vision to generative AI. Encouragement every step of the way: This book is designed to reduce anxiety, boost your confidence, and make every breakthrough-big or small-feel like a true achievement. Key Takeaways: Build a solid foundation in machine learning with approachable examples. Learn by doing, with practical projects you can showcase. Demystify neural networks, deep learning, and natural language processing. Use industry-leading tools (PyTorch, Hugging Face) for real applications. Troubleshoot, debug, and develop your skills in a welcoming, supportive environment. Don't let fear or confusion hold you back from joining the world of AI. With this book as your companion, you'll discover that machine learning is not just for experts-it's for anyone with curiosity and determination. Start your journey today. Empower yourself to build, experiment, and create intelligent applications from scratch. Your adventure into the future of technology begins right here, right now-with a patient mentor by your side.



Pytorch Computer Vision Cookbook


Pytorch Computer Vision Cookbook
DOWNLOAD
Author : Michael Avendi
language : en
Publisher:
Release Date : 2020-03-20

Pytorch Computer Vision Cookbook written by Michael Avendi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-20 with Computers categories.


Discover powerful ways to use deep learning algorithms and solve real-world computer vision problems using Python Key Features Solve the trickiest of problems in computer vision by combining the power of deep learning and neural networks Leverage PyTorch 1.x capabilities to perform image classification, object detection, and more Train and deploy enterprise-grade, deep learning models for computer vision applications Book Description Computer vision techniques play an integral role in helping developers gain a high-level understanding of digital images and videos. With this book, you'll learn how to solve the trickiest problems in computer vision (CV) using the power of deep learning algorithms, and leverage the latest features of PyTorch 1.x to perform a variety of CV tasks. Starting with a quick overview of the PyTorch library and key deep learning concepts, the book then covers common and not-so-common challenges faced while performing image recognition, image segmentation, object detection, image generation, and other tasks. Next, you'll understand how to implement these tasks using various deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and generative adversarial networks (GANs). Using a problem-solution approach, you'll learn how to solve any issue you might face while fine-tuning the performance of a model or integrating it into your application. Later, you'll get to grips with scaling your model to handle larger workloads, and implementing best practices for training models efficiently. By the end of this CV book, you'll be proficient in confidently solving many CV related problems using deep learning and PyTorch. What you will learn Develop, train and deploy deep learning algorithms using PyTorch 1.x Understand how to fine-tune and change hyperparameters to train deep learning algorithms Perform various CV tasks such as classification, detection, and segmentation Implement a neural style transfer network based on CNNs and pre-trained models Generate new images and implement adversarial attacks using GANs Implement video classification models based on RNN, LSTM, and 3D-CNN Discover best practices for training and deploying deep learning algorithms for CV applications Who this book is for Computer vision professionals, data scientists, deep learning engineers, and AI developers looking for quick solutions for various computer vision problems will find this book useful. Intermediate-level knowledge of computer vision concepts, along with Python programming experience is required.



Deep Learning With Pytorch 1 X


Deep Learning With Pytorch 1 X
DOWNLOAD
Author : Laura Mitchell
language : en
Publisher:
Release Date : 2019-11-29

Deep Learning With Pytorch 1 X written by Laura Mitchell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.


Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x Key Features Gain a thorough understanding of the PyTorch framework and learn to implement neural network architectures Understand GPU computing to perform heavy deep learning computations using Python Apply cutting-edge natural language processing (NLP) techniques to solve problems with textual data Book Description PyTorch is gaining the attention of deep learning researchers and data science professionals due to its accessibility and efficiency, along with the fact that it's more native to the Python way of development. This book will get you up and running with this cutting-edge deep learning library, effectively guiding you through implementing deep learning concepts. In this second edition, you'll learn the fundamental aspects that power modern deep learning, and explore the new features of the PyTorch 1.x library. You'll understand how to solve real-world problems using CNNs, RNNs, and LSTMs, along with discovering state-of-the-art modern deep learning architectures, such as ResNet, DenseNet, and Inception. You'll then focus on applying neural networks to domains such as computer vision and NLP. Later chapters will demonstrate how to build, train, and scale a model with PyTorch and also cover complex neural networks such as GANs and autoencoders for producing text and images. In addition to this, you'll explore GPU computing and how it can be used to perform heavy computations. Finally, you'll learn how to work with deep learning-based architectures for transfer learning and reinforcement learning problems. By the end of this book, you'll be able to confidently and easily implement deep learning applications in PyTorch. What you will learn Build text classification and language modeling systems using neural networks Implement transfer learning using advanced CNN architectures Use deep reinforcement learning techniques to solve optimization problems in PyTorch Mix multiple models for a powerful ensemble model Build image classifiers by implementing CNN architectures using PyTorch Get up to speed with reinforcement learning, GANs, LSTMs, and RNNs with real-world examples Who this book is for This book is for data scientists and machine learning engineers looking to work with deep learning algorithms using PyTorch 1.x. You will also find this book useful if you want to migrate to PyTorch 1.x. Working knowledge of Python programming and some understanding of machine learning will be helpful.



Mastering Computer Vision With Pytorch And Machine Learning


Mastering Computer Vision With Pytorch And Machine Learning
DOWNLOAD
Author : Caide Xiao
language : en
Publisher: Institute of Physics Publishing
Release Date : 2024-04-29

Mastering Computer Vision With Pytorch And Machine Learning written by Caide Xiao and has been published by Institute of Physics Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-29 with Computers categories.


This book is a valuable resource for professionals, researchers, and students who want to expand their knowledge of advanced computer vision techniques using PyTorch.



Hands On Computer Vision With Detectron2


Hands On Computer Vision With Detectron2
DOWNLOAD
Author : Van Vung Pham
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-04-14

Hands On Computer Vision With Detectron2 written by Van Vung Pham and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-14 with Computers categories.


Explore Detectron2 using cutting-edge models and learn all about implementing future computer vision applications in custom domains Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to tackle common computer vision tasks in modern businesses with Detectron2 Leverage Detectron2 performance tuning techniques to control the model's finest details Deploy Detectron2 models into production and develop Detectron2 models for mobile devices Book Description Computer vision is a crucial component of many modern businesses, including automobiles, robotics, and manufacturing, and its market is growing rapidly. This book helps you explore Detectron2, Facebook's next-gen library providing cutting-edge detection and segmentation algorithms. It's used in research and practical projects at Facebook to support computer vision tasks, and its models can be exported to TorchScript or ONNX for deployment. The book provides you with step-by-step guidance on using existing models in Detectron2 for computer vision tasks (object detection, instance segmentation, key-point detection, semantic detection, and panoptic segmentation). You'll get to grips with the theories and visualizations of Detectron2's architecture and learn how each module in Detectron2 works. As you advance, you'll build your practical skills by working on two real-life projects (preparing data, training models, fine-tuning models, and deployments) for object detection and instance segmentation tasks using Detectron2. Finally, you'll deploy Detectron2 models into production and develop Detectron2 applications for mobile devices. By the end of this deep learning book, you'll have gained sound theoretical knowledge and useful hands-on skills to help you solve advanced computer vision tasks using Detectron2. What you will learn Build computer vision applications using existing models in Detectron2 Grasp the concepts underlying Detectron2's architecture and components Develop real-life projects for object detection and object segmentation using Detectron2 Improve model accuracy using Detectron2's performance-tuning techniques Deploy Detectron2 models into server environments with ease Develop and deploy Detectron2 models into browser and mobile environments Who this book is for If you are a deep learning application developer, researcher, or software developer with some prior knowledge about deep learning, this book is for you to get started and develop deep learning models for computer vision applications. Even if you are an expert in computer vision and curious about the features of Detectron2, or you would like to learn some cutting-edge deep learning design patterns, you will find this book helpful. Some HTML, Android, and C++ programming skills are advantageous if you want to deploy computer vision applications using these platforms.