Mastering Social Media Mining With Python
DOWNLOAD
Download Mastering Social Media Mining With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Social Media Mining With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Social Media Mining With Python
DOWNLOAD
Author : Marco Bonzanini
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-07-29
Mastering Social Media Mining With Python written by Marco Bonzanini and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Computers categories.
Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.
Predicting The Dynamics Of Research Impact
DOWNLOAD
Author : Yannis Manolopoulos
language : en
Publisher: Springer Nature
Release Date : 2021-09-22
Predicting The Dynamics Of Research Impact written by Yannis Manolopoulos and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.
This book provides its readers with an introduction to interesting prediction and science dynamics problems in the field of Science of Science. Prediction focuses on the forecasting of future performance (or impact) of an entity, either a research article or a scientist, and also the prediction of future links in collaboration networks or identifying missing links in citation networks. The single chapters are written in a way that help the reader gain a detailed technical understanding of the corresponding subjects, the strength and weaknesses of the state-of-the-art approaches for each described problem, and the currently open challenges. While chapter 1 provides a useful contribution in the theoretical foundations of the fields of scientometrics and science of science, chapters 2-4 turn the focal point to the study of factors that affect research impact and its dynamics. Chapters 5-7 then focus on article-level measures that quantify the current and future impact of scientific articles. Next, chapters 8-10 investigate subjects relevant to predicting the future impact of individual researchers. Finally, chapters 11-13 focus on science evolution and dynamics, leveraging heterogeneous and interconnected data, where the analysis of research topic trends and their evolution has always played a key role in impact prediction approaches and quantitative analyses in the field of bibliometrics. Each chapter can be read independently, since it includes a detailed description of the problem being investigated along with a thorough discussion and study of the respective state-of-the-art. Due to the cross-disciplinary character of the Science of Science field, the book may be useful to interested readers from a variety of disciplines like information science, information retrieval, network science, informetrics, scientometrics, and machine learning, to name a few. The profiles of the readers may also be diverse ranging from researchers and professors in the respective fields to students and developers being curious about the covered subjects.
Encyclopedia Of Organizational Knowledge Administration And Technology
DOWNLOAD
Author : Khosrow-Pour D.B.A., Mehdi
language : en
Publisher: IGI Global
Release Date : 2020-09-29
Encyclopedia Of Organizational Knowledge Administration And Technology written by Khosrow-Pour D.B.A., Mehdi and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-29 with Business & Economics categories.
For any organization to be successful, it must operate in such a manner that knowledge and information, human resources, and technology are continually taken into consideration and managed effectively. Business concepts are always present regardless of the field or industry – in education, government, healthcare, not-for-profit, engineering, hospitality/tourism, among others. Maintaining organizational awareness and a strategic frame of mind is critical to meeting goals, gaining competitive advantage, and ultimately ensuring sustainability. The Encyclopedia of Organizational Knowledge, Administration, and Technology is an inaugural five-volume publication that offers 193 completely new and previously unpublished articles authored by leading experts on the latest concepts, issues, challenges, innovations, and opportunities covering all aspects of modern organizations. Moreover, it is comprised of content that highlights major breakthroughs, discoveries, and authoritative research results as they pertain to all aspects of organizational growth and development including methodologies that can help companies thrive and analytical tools that assess an organization’s internal health and performance. Insights are offered in key topics such as organizational structure, strategic leadership, information technology management, and business analytics, among others. The knowledge compiled in this publication is designed for entrepreneurs, managers, executives, investors, economic analysts, computer engineers, software programmers, human resource departments, and other industry professionals seeking to understand the latest tools to emerge from this field and who are looking to incorporate them in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to business, management science, organizational development, entrepreneurship, sociology, corporate psychology, computer science, and information technology will benefit from the research compiled within this publication.
Cognitive Analytics Concepts Methodologies Tools And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2020-03-06
Cognitive Analytics Concepts Methodologies Tools And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-06 with Science categories.
Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.
Recent Advances In Intelligent Manufacturing
DOWNLOAD
Author : Harish Kumar
language : en
Publisher: Springer Nature
Release Date : 2023-07-21
Recent Advances In Intelligent Manufacturing written by Harish Kumar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-21 with Technology & Engineering categories.
The book presents the select proceedings of the International Conference on Advancement in Manufacturing Engineering (ICAME) 2022 held at National Institute of Technology Delhi, India, during September 2–3, 2022. It discusses the latest research in the area of industrial and production engineering. Various topics covered in this book are precision engineering, additive manufacturing, computer-aided manufacturing, digital manufacturing, intelligent control systems and optimization, flexible manufacturing system, smart manufacturing, hybrid machining, smart materials, polymers, ceramics and composites and their processing, energy harvesting materials, design thinking and prototyping, product life cycle strategies, Industry 4.0, etc. The book is useful for researchers and professionals working in the area of industrial and production engineering.
Python Social Media Analytics
DOWNLOAD
Author : Siddhartha Chatterjee
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-28
Python Social Media Analytics written by Siddhartha Chatterjee and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-28 with Computers categories.
Leverage the power of Python to collect, process, and mine deep insights from social media data About This Book Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more Analyze and extract actionable insights from your social data using various Python tools A highly practical guide to conducting efficient social media analytics at scale Who This Book Is For If you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn Understand the basics of social media mining Use PyMongo to clean, store, and access data in MongoDB Understand user reactions and emotion detection on Facebook Perform Twitter sentiment analysis and entity recognition using Python Analyze video and campaign performance on YouTube Mine popular trends on GitHub and predict the next big technology Extract conversational topics on public internet forums Analyze user interests on Pinterest Perform large-scale social media analytics on the cloud In Detail Social Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approach This book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required.
Mining The Social Web
DOWNLOAD
Author : Matthew A. Russell
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-12-04
Mining The Social Web written by Matthew A. Russell and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-04 with Computers categories.
Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media—including who’s connecting with whom, what they’re talking about, and where they’re located—using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter’s example code, packaged as a Jupyter notebook Adapt and contribute to the code’s open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits
Mastering Data Mining With Python
DOWNLOAD
Author : Megan Squire
language : en
Publisher:
Release Date : 2016
Mastering Data Mining With Python written by Megan Squire and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Business planning categories.
Learn how to create more powerful data mining applications with this comprehensive Python guide to advance data analytics techniques About This Book Dive deeper into data mining with Python ? don't be complacent, sharpen your skills! From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challenge Become a more fluent and confident Python data-analyst, in full control of its extensive range of libraries Who This Book Is For This book is for data scientists who are already familiar with some basic data mining techniques such as SQL and machine learning, and who are comfortable with Python. If you are ready to learn some more advanced techniques in data mining in order to become a data mining expert, this is the book for you! What You Will Learn Explore techniques for finding frequent itemsets and association rules in large data sets Learn identification methods for entity matches across many different types of data Identify the basics of network mining and how to apply it to real-world data sets Discover methods for detecting the sentiment of text and for locating named entities in text Observe multiple techniques for automatically extracting summaries and generating topic models for text See how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data set In Detail Data mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy ? without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding. If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries. In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software e...
Mastering Data Mining With Python Find Patterns Hidden In Your Data
DOWNLOAD
Author : Megan Squire
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-08-29
Mastering Data Mining With Python Find Patterns Hidden In Your Data written by Megan Squire and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-29 with Computers categories.
Learn how to create more powerful data mining applications with this comprehensive Python guide to advance data analytics techniques About This Book Dive deeper into data mining with Python – don't be complacent, sharpen your skills! From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challenge Become a more fluent and confident Python data-analyst, in full control of its extensive range of libraries Who This Book Is For This book is for data scientists who are already familiar with some basic data mining techniques such as SQL and machine learning, and who are comfortable with Python. If you are ready to learn some more advanced techniques in data mining in order to become a data mining expert, this is the book for you! What You Will Learn Explore techniques for finding frequent itemsets and association rules in large data sets Learn identification methods for entity matches across many different types of data Identify the basics of network mining and how to apply it to real-world data sets Discover methods for detecting the sentiment of text and for locating named entities in text Observe multiple techniques for automatically extracting summaries and generating topic models for text See how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data set In Detail Data mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy – without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding. If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries. In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software engineering, and we will spend time learning how to understand and interpret the results we get. By the end of this book, you will have solid experience implementing some of the most interesting and relevant data mining techniques available today, and you will have achieved a greater fluency in the important field of Python data analytics. Style and approach This book will teach you the intricacies in applying data mining using real-world scenarios and will act as a very practical solution to your data mining needs.
Mining The Social Web
DOWNLOAD
Author : Matthew A. Russell
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-10-04
Mining The Social Web written by Matthew A. Russell and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-04 with Computers categories.
How can you tap into the wealth of social web data to discover who’s making connections with whom, what they’re talking about, and where they’re located? With this expanded and thoroughly revised edition, you’ll learn how to acquire, analyze, and summarize data from all corners of the social web, including Facebook, Twitter, LinkedIn, Google+, GitHub, email, websites, and blogs. Employ the Natural Language Toolkit, NetworkX, and other scientific computing tools to mine popular social web sites Apply advanced text-mining techniques, such as clustering and TF-IDF, to extract meaning from human language data Bootstrap interest graphs from GitHub by discovering affinities among people, programming languages, and coding projects Build interactive visualizations with D3.js, an extraordinarily flexible HTML5 and JavaScript toolkit Take advantage of more than two-dozen Twitter recipes, presented in O’Reilly’s popular "problem/solution/discussion" cookbook format The example code for this unique data science book is maintained in a public GitHub repository. It’s designed to be easily accessible through a turnkey virtual machine that facilitates interactive learning with an easy-to-use collection of IPython Notebooks.