Download Machine Learning With Go Second Edition - eBooks (PDF)

Machine Learning With Go Second Edition


Machine Learning With Go Second Edition
DOWNLOAD

Download Machine Learning With Go Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning With Go Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning With Go Second Edition


Machine Learning With Go Second Edition
DOWNLOAD
Author : Daniel Whitenack
language : en
Publisher:
Release Date : 2019-04-30

Machine Learning With Go Second Edition written by Daniel Whitenack and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Infuse an extra layer of intelligence into your Go applications with machine learning and AI Key Features Build simple, maintainable, and easy to deploy machine learning applications with popular Go packages Learn the statistics, algorithms, and techniques to implement machine learning Overcome the common challenges faced while deploying and scaling the machine learning workflows Book Description This updated edition of the popular Machine Learning With Go shows you how to overcome the common challenges of integrating analysis and machine learning code within an existing engineering organization. Machine Learning With Go, Second Edition, will begin by helping you gain an understanding of how to gather, organize, and parse real-world data from a variety of sources. The book also provides absolute coverage in developing groundbreaking machine learning pipelines including predictive models, data visualizations, and statistical techniques. Up next, you will learn the thorough utilization of Golang libraries including golearn, gorgonia, gosl, hector, and mat64. You will discover the various TensorFlow capabilities, along with building simple neural networks and integrating them into machine learning models. You will also gain hands-on experience implementing essential machine learning techniques such as regression, classification, and clustering with the relevant Go packages. Furthermore, you will deep dive into the various Go tools that help you build deep neural networks. Lastly, you will become well versed with best practices for machine learning model tuning and optimization. By the end of the book, you will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations What you will learn Become well versed with data processing, parsing, and cleaning using Go packages Learn to gather data from various sources and in various real-world formats Perform regression, classification, and image processing with neural networks Evaluate and detect anomalies in a time series model Understand common deep learning architectures to learn how each model is built Learn how to optimize, build, and scale machine learning workflows Discover the best practices for machine learning model tuning for successful deployments Who this book is for This book is primarily for Go programmers who want to become a machine learning engineer and to build a solid machine learning mindset along with a good hold on Go packages. This is also useful for data analysts, data engineers, machine learning users who want to run their machine learning experiments using the Go ecosystem. Prior understanding of linear algebra is required to benefit from this book



Mastering Go


Mastering Go
DOWNLOAD
Author : Mihalis Tsoukalos
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-29

Mastering Go written by Mihalis Tsoukalos and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-29 with Computers categories.


Publisher's Note: This edition from 2019 is outdated and is not compatible with the latest version of Go. A new third edition, updated for 2021 and featuring the latest in Go programming, has now been published. Key Features • Second edition of the bestselling guide to advanced Go programming, expanded to cover machine learning, more Go packages and a range of modern development techniques • Completes the Go developer’s education with real-world guides to building high-performance production systems • Packed with practical examples and patterns to apply to your own development work • Clearly explains Go nuances and features to remove the frustration from Go development Book Description Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go’s capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques. What you will learn • Clear guidance on using Go for production systems • Detailed explanations of how Go internals work, the design choices behind the language, and how to optimize your Go code • A full guide to all Go data types, composite types, and data structures • Master packages, reflection, and interfaces for effective Go programming • Build high-performance systems networking code, including server and client-side applications • Interface with other systems using WebAssembly, JSON, and gRPC • Write reliable, high-performance concurrent code • Build machine learning systems in Go, from simple statistical regression to complex neural networks Who this book is for Mastering Go, Second Edition is for Go programmers who already know the language basics, and want to become expert Go practitioners. Table of Contents • Go and the Operating System • Understanding Go Internals • Working with Basic Go Data Types • The Uses of Composite Types • How to Enhance Go Code with Data Structures • What You Might Not Know About Go Packages and functions • Reflection and Interfaces for All Seasons • Telling a Unix System What to Do • Concurrency in Go: Goroutines, Channels, and Pipelines • Concurrency in Go: Advanced Topics • Code Testing, Optimization, and Profiling • The Foundations of Network Programming in Go • Network Programming: Building Your Own Servers and Clients • Machine Learning in Go Review "Mastering Go - Second Edition is a must-read for developers wanting to expand their knowledge of the language or wanting to pick it up from scratch" -- Alex Ellis - Founder of OpenFaaS Ltd, CNCF Ambassador



Mastering Go Second Edition


Mastering Go Second Edition
DOWNLOAD
Author : Mihalis Tsoukalos
language : en
Publisher:
Release Date : 2021

Mastering Go Second Edition written by Mihalis Tsoukalos and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Go (Computer program language) categories.


Publisher's Note: This edition from 2019 is outdated and is not compatible with the latest version of Go. A new third edition, updated for 2021 and featuring the latest in Go programming, has now been published. Key Features Second edition of the bestselling guide to advanced Go programming, expanded to cover machine learning, more Go packages and a range of modern development techniques Completes the Go developer's education with real-world guides to building high-performance production systems Packed with practical examples and patterns to apply to your own development work Clearly explains Go nuances and features to remove the frustration from Go development Book Description Often referred to (incorrectly) as Golang, Go is the high-performance systems language of the future. Mastering Go, Second Edition helps you become a productive expert Go programmer, building and improving on the groundbreaking first edition. Mastering Go, Second Edition shows how to put Go to work on real production systems. For programmers who already know the Go language basics, this book provides examples, patterns, and clear explanations to help you deeply understand Go's capabilities and apply them in your programming work. The book covers the nuances of Go, with in-depth guides on types and structures, packages, concurrency, network programming, compiler design, optimization, and more. Each chapter ends with exercises and resources to fully embed your new knowledge. This second edition includes a completely new chapter on machine learning in Go, guiding you from the foundation statistics techniques through simple regression and clustering to classification, neural networks, and anomaly detection. Other chapters are expanded to cover using Go with Docker and Kubernetes, Git, WebAssembly, JSON, and more. If you take the Go programming language seriously, the second edition of this book is an essential guide on expert techniques. What you will learn Clear guidance on using Go for production systems Detailed explanations of how Go internals work, the design choices behind the language, and how to optimize your Go code A full guide to all Go data types, composite types, and data structures Master packages, reflection, and interfaces for effective Go programming Build high-performance systems networking code, including server and client-side applications Interface with other systems using WebAssembly, JSON, and gRPC Write reliable, high-performance concurrent code Buil ...



Test Yourself On Build A Large Language Model From Scratch


Test Yourself On Build A Large Language Model From Scratch
DOWNLOAD
Author :
language : en
Publisher: Simon and Schuster
Release Date : 2025-07-22

Test Yourself On Build A Large Language Model From Scratch written by and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-22 with Computers categories.


Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! Sebastian Raschka’s bestselling book Build a Large Language Model (From Scratch) is the best way to learn how Large Language Models function. It uses Python and the PyTorch deep learning library. It’s a unique way to learn this subject, which some believe is the only way to truly learn: you build a model yourself. Even with the clear explanations, diagrams, and code in the book, learning a complex subject is still hard. This Test Yourself guide intends to make it a little easier. The structure mirrors the structure of Build a Large Language Model (From Scratch), focusing on key concepts from each chapter. You can test yourself with multiple-choice quizzes, questions on code and key concepts, and questions with longer answers that push you to think critically. The answers to all questions are provided. Depending on what you know at any point, this Test Yourself guide can help you in different ways. It will solidify your knowledge if used after reading a chapter. But it will also benefit you if you digest it before reading. By testing yourself on the main concepts and their relationships you are primed to navigate a chapter more easily and be ready for its messages. We recommend using it before and after reading, as well as later when you have started forgetting. Repeated learning solidifies our knowledge and integrates it with related knowledge already in our long-term memory. What's inside • Questions on code and key concepts • Critical thinking exercises requiring longer answers • Answers for all questions About the reader For readers of Build a Large Language Model (From Scratch) who want to enhance their learning with exercises and self-assessment tools. About the author Curated from Build a Large Language Model (From Scratch)



Machine Learning


Machine Learning
DOWNLOAD
Author : William W. Cohen
language : en
Publisher: Morgan Kaufmann Publishers
Release Date : 1994

Machine Learning written by William W. Cohen and has been published by Morgan Kaufmann Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Computers categories.


Presents 42 papers from the July 1994 conference. Topics covered include improving accuracy of incorrect domain theories, greedy attribute selection, boosting and other machine learning algorithms, incremental reduced-error pruning, learning disjunctive concepts using genetic algorithms, and a Baye



The Academy


The Academy
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1877

The Academy written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1877 with categories.




Machine Learning With Go


Machine Learning With Go
DOWNLOAD
Author : Daniel Whitenack
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-26

Machine Learning With Go written by Daniel Whitenack and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-26 with Computers categories.


Build simple, maintainable, and easy to deploy machine learning applications. About This Book Build simple, but powerful, machine learning applications that leverage Go's standard library along with popular Go packages. Learn the statistics, algorithms, and techniques needed to successfully implement machine learning in Go Understand when and how to integrate certain types of machine learning model in Go applications. Who This Book Is For This book is for Go developers who are familiar with the Go syntax and can develop, build, and run basic Go programs. If you want to explore the field of machine learning and you love Go, then this book is for you! Machine Learning with Go will give readers the practical skills to perform the most common machine learning tasks with Go. Familiarity with some statistics and math topics is necessary. What You Will Learn Learn about data gathering, organization, parsing, and cleaning. Explore matrices, linear algebra, statistics, and probability. See how to evaluate and validate models. Look at regression, classification, clustering. Learn about neural networks and deep learning Utilize times series models and anomaly detection. Get to grip with techniques for deploying and distributing analyses and models. Optimize machine learning workflow techniques In Detail The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios. Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization. The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages. Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations. Style and approach This book connects the fundamental, theoretical concepts behind Machine Learning to practical implementations using the Go programming language.



Bowker S Complete Video Directory


Bowker S Complete Video Directory
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2000

Bowker S Complete Video Directory written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Home video systems industry categories.




Introduction To Computer Programming For The Social Sciences


Introduction To Computer Programming For The Social Sciences
DOWNLOAD
Author : Peter B. Harkins
language : en
Publisher:
Release Date : 1973

Introduction To Computer Programming For The Social Sciences written by Peter B. Harkins and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1973 with Electronic data processing categories.




The Essence Of Artificial Intelligence


The Essence Of Artificial Intelligence
DOWNLOAD
Author : Alison Cawsey
language : en
Publisher: Pearson
Release Date : 1998

The Essence Of Artificial Intelligence written by Alison Cawsey and has been published by Pearson this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.


A concise, practical introduction to artificial intelligence, this title starts with the fundamentals of knowledge representation, inference, expert systems, natural language processing, machine learning, neural networks, agents, robots, and much more. Examples and algorithms are presented throughout, and the book includes a complete glossary.