Download Machine Learning Bookcamp - eBooks (PDF)

Machine Learning Bookcamp


Machine Learning Bookcamp
DOWNLOAD

Download Machine Learning Bookcamp PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Bookcamp book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning Bookcamp


Machine Learning Bookcamp
DOWNLOAD
Author : Alexey Grigorev
language : en
Publisher: Simon and Schuster
Release Date : 2021-11-23

Machine Learning Bookcamp written by Alexey Grigorev and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-23 with Computers categories.


Time to flex your machine learning muscles! Take on the carefully designed challenges of the Machine Learning Bookcamp and master essential ML techniques through practical application. Summary In Machine Learning Bookcamp you will: Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images Deploy ML models to a production-ready environment The only way to learn is to practice! In Machine Learning Bookcamp, you’ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image analysis, each new project builds on what you’ve learned in previous chapters. You’ll build a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Master key machine learning concepts as you build actual projects! Machine learning is what you need for analyzing customer behavior, predicting price trends, evaluating risk, and much more. To master ML, you need great examples, clear explanations, and lots of practice. This book delivers all three! About the book Machine Learning Bookcamp presents realistic, practical machine learning scenarios, along with crystal-clear coverage of key concepts. In it, you’ll complete engaging projects, such as creating a car price predictor using linear regression and deploying a churn prediction service. You’ll go beyond the algorithms and explore important techniques like deploying ML applications on serverless systems and serving models with Kubernetes and Kubeflow. Dig in, get your hands dirty, and have fun building your ML skills! What's inside Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Deploy ML models to a production-ready environment About the reader Python programming skills assumed. No previous machine learning knowledge is required. About the author Alexey Grigorev is a principal data scientist at OLX Group. He runs DataTalks.Club, a community of people who love data. Table of Contents 1 Introduction to machine learning 2 Machine learning for regression 3 Machine learning for classification 4 Evaluation metrics for classification 5 Deploying machine learning models 6 Decision trees and ensemble learning 7 Neural networks and deep learning 8 Serverless deep learning 9 Serving models with Kubernetes and Kubeflow



Machine Learning In Finance


Machine Learning In Finance
DOWNLOAD
Author : Musa Gün
language : en
Publisher: Springer Nature
Release Date : 2025-03-29

Machine Learning In Finance written by Musa Gün and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-29 with Business & Economics categories.


This book discusses the evolution of technical features in decentralized finance and focuses on machine-learning finance in emerging economies. As technological advancement evolves at an unpredictable pace, the financial industry, like every other sector, must adapt accordingly. Furthermore, the rapid expansion of diverse financial products and services is creating new applications and markets. Alongside technological progress, the exploration of complex patterns in vast amounts of data, known as big data, is facilitated by its commonly acknowledged characteristics: volume, variety, veracity, value, and velocity. Overall, machine learning has become crucial in the financial industry, allowing businesses to automate operations, gain insights from data, and make more informed decisions in real time. This edited book covers algorithmic trading, risk management, fraud detection, customer service and personalization, portfolio management, credit scoring, sentiment analysis, and algorithmic pricing. The book connects theoretical concepts with practical real-world applications, benefiting professionals looking to enhance their proficiency in using these methods efficiently. It offers insightful guidance for theorists, market participants, and policymakers by exploring financial theories and practices in light of contemporary machine-learning approaches, with a special emphasis on emerging economies.



Modern Artificial Intelligence And Data Science


Modern Artificial Intelligence And Data Science
DOWNLOAD
Author : Abdellah Idrissi
language : en
Publisher: Springer Nature
Release Date : 2023-08-25

Modern Artificial Intelligence And Data Science written by Abdellah Idrissi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-25 with Computers categories.


This Book, through its various chapters presenting the Recent Advances in Modern Artificial Intelligence and Data Science as well as their Applications, aims to set up lasting and real applications necessary for both academics and professionals. Readers find here the fruit of many research ideas covering a wide range of application areas that can be explored for the advancement of their research or the development of their business. These ideas present new techniques and trends projected in various areas of daily life. Through its proposals of new ideas, this Book serves as a real guide both for experienced readers and for beginners in these specialized fields. It also covers several applications that explain how they can support some societal challenges such as education, health, agriculture, clean energy, business, environment, security and many more. This Book is therefore intended for Designers, Developers, Decision-Makers, Consultants, Engineers, and of course Master's/Doctoral Students, Researchers and Academics.



Deep Learning With Structured Data


Deep Learning With Structured Data
DOWNLOAD
Author : Mark Ryan
language : en
Publisher: Simon and Schuster
Release Date : 2020-12-08

Deep Learning With Structured Data written by Mark Ryan and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-08 with Computers categories.


Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps



Knowledge Management And Digital Transformation Power


Knowledge Management And Digital Transformation Power
DOWNLOAD
Author : Orhan TORKUL
language : en
Publisher: Efe Akademi Yayınları
Release Date : 2022-11-25

Knowledge Management And Digital Transformation Power written by Orhan TORKUL and has been published by Efe Akademi Yayınları this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-25 with Computers categories.


İÇİNDEKİLER ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNIQUES IN DISTANCE EDUCATION (2012-2021): A SYSTEMATIC REVIEW MEHMET BARIŞ HORZUM - DENİZ DEMİRCİOĞLU DİREN THE ROLE OF CUSTOMER KNOWLEDGE IN DIGITAL TRANSFORMATION: CUSTOMER KNOWLEDGE MANAGEMENT AS A COMPETITIVE ADVANTAGE THROUGH SOCIAL MEDIA PLATFORMS LEVENT ÇALLI MACHINE LEARNING AS A TOOL FOR ACHIEVING DIGITAL TRANSFORMATION MERVE ŞİŞCİ - YUNUS EMRE TORKUL - İHSAN HAKAN SELVİ BLOCKCHAIN-BASED ENERGY MANAGEMENT FOR SUPPLY CHAIN MANAGEMENT ERAY AÇIKGÖZ - BERRİN DENİZHAN A STUDY ON DEEP LEARNING BASED APPLICATIONS USED IN AGRICULTURE IN TURKIYE GÜNAY TEMÜR BLOCKCHAIN AND INFORMATION SHARING FATİH ÇALLI INDUSTRY 4.0, SMART FACTORIES AND EFFECTS ON BUSINESS TİJEN ÖVER ÖZÇELİK - İHSAN HAKAN SELVİ - AYTEN YILMAZ YALÇINER - MUHAMMED TAHA ZEREN ANALYSIS OF THE PARAMETERS THAT AFFECT THE MOISTURE CONTENT OF THE PUMPKIN BY DATA MINING FEYZA GÜRBÜZ OPPORTUNITIES AND CHALLENGES OF DIGITAL TRANSFORMATION IN SMEs-THE ROLE OF DYNAMIC CAPABILITIES AS A CATALYST BÜŞRA ALMA ÇALLI A CUSTOMER-CENTRIC ANALYTICS FRAMEWORK AND INSIGHTS OF DIGITAL TRANSFORMATION ÖMER FARUK SEYMEN THE FUTURE OF MONEY AS A FINANCIAL INVESTMENT TOOL: CENTRAL BANK DIGITAL CURRENCY İNCİ MERVE ALTAN



Financial Data Analysis Using Python


Financial Data Analysis Using Python
DOWNLOAD
Author : Dmytro Zherlitsyn
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2024-12-26

Financial Data Analysis Using Python written by Dmytro Zherlitsyn and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-26 with Computers categories.


This book will introduce essential concepts in financial analysis methods & models, covering time-series analysis, graphical analysis, technical and fundamental analysis, asset pricing and portfolio theory, investment and trade strategies, risk assessment and prediction, and financial ML practices. The Python programming language and its ecosystem libraries, such as Pandas, NumPy, SciPy, statsmodels, Matplotlib, Seaborn, Scikit-learn, Prophet, and other data science tools will demonstrate these rooted financial concepts in practice examples. This book will also help you understand the concepts of financial market dynamics, estimate the metrics of financial asset profitability, predict trends, evaluate strategies, optimize portfolios, and manage financial risks. You will also learn data analysis techniques using the Python programming language to understand the basics of data preparation, visualization, and manipulation in the world of financial data. FEATURES • Illustrates financial data analysis using Python data science libraries & techniques • Uses Python visualization tools to justify investment and trading strategies • Covers asset pricing & portfolio management methods with Python



Conversational Ai


Conversational Ai
DOWNLOAD
Author : Andrew Freed
language : en
Publisher: Simon and Schuster
Release Date : 2021-11-02

Conversational Ai written by Andrew Freed and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-02 with Computers categories.


"A thorough guide to the entire process of designing and implementing virtual assistants. Goes way beyond the technicalities." - Maxim Volgin, KLM Design, develop, and deploy human-like AI solutions that chat with your customers, solve their problems, and streamline your support services. In Conversational AI, you will learn how to: Pick the right AI assistant type and channel for your needs Write dialog with intentional tone and specificity Train your AI’s classifier from the ground up Create question-and-direct-response AI assistants Design and optimize a process flow for web and voice Test your assistant’s accuracy and plan out improvements Conversational AI: Chatbots that work teaches you to create the kind of AI-enabled assistants that are revolutionizing the customer service industry. You’ll learn to build effective conversational AI that can automate common inquiries and easily address your customers' most common problems. This engaging and entertaining book delivers the essential technical and creative skills for designing successful AI solutions, from coding process flows and training machine learning, to improving your written dialog. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Create AI-driven chatbots and other intelligent agents that humans actually enjoy talking to! Adding intelligence to automated response systems saves time and money for you and your customers. Conversational AI systems excel at routine tasks such as answering common questions, classifying issues, and routing customers to the appropriate human staff. This book will show you how to build effective, production-ready AI assistants. About the book Conversational AI is a guide to creating AI-driven voice and text agents for customer support and other conversational tasks. This practical and entertaining book combines design theory with techniques for building and training AI systems. In it, you’ll learn how to find training data, assess performance, and write dialog that sounds human. You’ll go from building simple chatbots to designing the voice assistant for a complete call center. What's inside Pick the right AI for your needs Train your AI classifier Create question-and-direct-response assistants Design and optimize a process flow About the reader For software developers. Examples use Watson Assistant and Python. About the author Andrew R. Freed is a Master Inventor and Senior Technical Staff Member at IBM. He has worked in AI solutions since 2012. Table of Contents PART 1 FOUNDATIONS 1 Introduction to conversational AI 2 Building your first conversational AI PART 2 DESIGNING FOR SUCCESS 3 Designing effective processes 4 Designing effective dialogue 5 Building a successful AI assistant PART 3 TRAINING AND TESTING 6 Training your assistant 7 How accurate is your assistant? 8 Testing your dialogue flows PART 4 MAINTENANCE 9 Deployment and management 10 Improving your assistant PART 5 ADVANCED/OPTIONAL TOPICS 11 Building your own classifier 12 Additional training for voice assistants



Data Science Bookcamp


Data Science Bookcamp
DOWNLOAD
Author : Leonard Apeltsin
language : en
Publisher: Simon and Schuster
Release Date : 2021-11-30

Data Science Bookcamp written by Leonard Apeltsin and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-30 with Computers categories.


Subtitle on cover: five real-world Python projects.



Feature Engineering Bookcamp


Feature Engineering Bookcamp
DOWNLOAD
Author : Sinan Ozdemir
language : en
Publisher: Simon and Schuster
Release Date : 2022-10-04

Feature Engineering Bookcamp written by Sinan Ozdemir and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-04 with Computers categories.


Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results. Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more.



Data Science Bookcamp


Data Science Bookcamp
DOWNLOAD
Author : Leonard Apeltsin
language : en
Publisher:
Release Date : 2021

Data Science Bookcamp written by Leonard Apeltsin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Data Science Bookcamp doesn't stop with surface-level theory and toy examples. As you work through each project, you'll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don't quite fit the model you're building. You'll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you'll be confident in your skills because you can see the results.