Download Machine Learning And Data Mining - eBooks (PDF)

Machine Learning And Data Mining


Machine Learning And Data Mining
DOWNLOAD

Download Machine Learning And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning For Data Science Handbook


Machine Learning For Data Science Handbook
DOWNLOAD
Author : Lior Rokach
language : en
Publisher: Springer Nature
Release Date : 2023-08-17

Machine Learning For Data Science Handbook written by Lior Rokach and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-17 with Mathematics categories.


This book is a major update to the very successful first and second editions (2005 and 2010) of Data Mining and Knowledge Discovery Handbook. Since the last edition, this field has continued to evolve and to gain popularity. Existing methods are constantly being improved and new methods, applications and aspects are introduced. The new title of this handbook and its content reflect these changes thoroughly. Some existing chapters have been brought up to date. In addition to major revision of the existing chapters, the new edition includes totally new topics, such as: deep learning, explainable AI, human factors and social issues and advanced methods for big-data. The significant enhancement to the content reflects the growth in importance of data science. The third edition is also a timely opportunity to incorporate many other changes based on peers and students’ feedback. This comprehensive handbook also presents a coherent and unified repository of data science major concepts, theories, methods, trends, challenges and applications. It covers all the crucial important machine learning methods used in data science. Today's accessibility and abundance of data make data science matters of considerable importance and necessity. Given the field's recent growth, it's not surprising that researchers and practitioners now have a wide range of methods and tools at their disposal. While statistics is fundamental for data science, methods originated from artificial intelligence, particularly machine learning, are also playing a significant role. This handbook aims to serve as the main reference for researchers in the fields of information technology, e-Commerce, information retrieval, data science, machine learning, data mining, databases and statistics as well as advanced level students studying computer science or electrical engineering. Practitioners working within these related fields and data scientists will also want to purchase this handbook as a reference.



Data Mining And Machine Learning Applications


Data Mining And Machine Learning Applications
DOWNLOAD
Author : Rohit Raja
language : en
Publisher: John Wiley & Sons
Release Date : 2022-01-26

Data Mining And Machine Learning Applications written by Rohit Raja and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-26 with Computers categories.


DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.



Machine Learning And Data Mining In Pattern Recognition


Machine Learning And Data Mining In Pattern Recognition
DOWNLOAD
Author : Petra Perner
language : en
Publisher: Springer
Release Date : 2012-07-02

Machine Learning And Data Mining In Pattern Recognition written by Petra Perner and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-02 with Computers categories.


This book constitutes the refereed proceedings of the 8th International Conference, MLDM 2012, held in Berlin, Germany in July 2012. The 51 revised full papers presented were carefully reviewed and selected from 212 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and web mining.



Machine Learning And Data Mining


Machine Learning And Data Mining
DOWNLOAD
Author : Igor Kononenko
language : en
Publisher: Elsevier
Release Date : 2007-04-30

Machine Learning And Data Mining written by Igor Kononenko and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-30 with Computers categories.


Data mining is often referred to by real-time users and software solutions providers as knowledge discovery in databases (KDD). Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. This book has been written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining.Suitable for advanced undergraduates and their tutors at postgraduate level in a wide area of computer science and technology topics as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to the libraries and bookshelves of the many companies who are using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions. - Provides an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining - A valuable addition to the libraries and bookshelves of companies using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions



Machine Learning And Data Mining In Pattern Recognition


Machine Learning And Data Mining In Pattern Recognition
DOWNLOAD
Author : Petra Perner
language : en
Publisher: Springer
Release Date : 2017-07-01

Machine Learning And Data Mining In Pattern Recognition written by Petra Perner and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-01 with Computers categories.


This book constitutes the refereed proceedings of the 13th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2017, held in New York, NY, USA in July/August 2017.The 31 full papers presented in this book were carefully reviewed and selected from 150 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining.



Metalearning


Metalearning
DOWNLOAD
Author : Pavel Brazdil
language : en
Publisher: Springer Nature
Release Date : 2022-02-22

Metalearning written by Pavel Brazdil and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-22 with Computers categories.


This open access book offers a comprehensive and thorough introduction to almost all aspects of metalearning and automated machine learning (AutoML), covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. As one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, AutoML is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.



Principles Of Data Mining


Principles Of Data Mining
DOWNLOAD
Author : David J. Hand
language : en
Publisher: MIT Press
Release Date : 2001-08-17

Principles Of Data Mining written by David J. Hand and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-17 with Computers categories.


The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.



Machine Learning And Data Mining For Computer Security


Machine Learning And Data Mining For Computer Security
DOWNLOAD
Author : Marcus A. Maloof
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-27

Machine Learning And Data Mining For Computer Security written by Marcus A. Maloof and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-27 with Computers categories.


"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.



Metalearning


Metalearning
DOWNLOAD
Author : Pavel Brazdil
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-11-26

Metalearning written by Pavel Brazdil and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-26 with Computers categories.


Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.



Machine Learning And Data Mining In Pattern Recognition


Machine Learning And Data Mining In Pattern Recognition
DOWNLOAD
Author : Petra Perner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-07-16

Machine Learning And Data Mining In Pattern Recognition written by Petra Perner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-16 with Computers categories.


This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning and Data Mining in Pattern Recognition, MLDM 2001, held in Leipzig, Germany in July 2001. The 26 revised full papers presented together with two invited papers were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections on case-based reasoning and associative memory; rule induction and grammars; clustering and conceptual clustering; data mining on signals, images, and spatio-temporal data; nonlinear function learning and neural net based learning; learning for handwriting recognition; statistical and evolutionary learning; and content-based image retrieval.