Learning Bayesian Models With R
DOWNLOAD
Download Learning Bayesian Models With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning Bayesian Models With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Learning Bayesian Models With R
DOWNLOAD
Author : Dr. Hari M. Koduvely
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-10-28
Learning Bayesian Models With R written by Dr. Hari M. Koduvely and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.
Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.
Learning Bayesian Models With R
DOWNLOAD
Author : Hari Koduvely
language : en
Publisher:
Release Date : 2015
Learning Bayesian Models With R written by Hari Koduvely and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with R (Computer program language) categories.
Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to ...
Bayesian Computation With R
DOWNLOAD
Author : Jim Albert
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-07
Bayesian Computation With R written by Jim Albert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-07 with Computers categories.
There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can • write short scripts to de?ne a Bayesian model • use or write functions to summarize a posterior distribution • use functions to simulate from the posterior distribution • construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).
Learning Probabilistic Graphical Models In R
DOWNLOAD
Author : David Bellot
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-04-29
Learning Probabilistic Graphical Models In R written by David Bellot and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-29 with Computers categories.
Familiarize yourself with probabilistic graphical models through real-world problems and illustrative code examples in R About This Book Predict and use a probabilistic graphical models (PGM) as an expert system Comprehend how your computer can learn Bayesian modeling to solve real-world problems Know how to prepare data and feed the models by using the appropriate algorithms from the appropriate R package Who This Book Is For This book is for anyone who has to deal with lots of data and draw conclusions from it, especially when the data is noisy or uncertain. Data scientists, machine learning enthusiasts, engineers, and those who curious about the latest advances in machine learning will find PGM interesting. What You Will Learn Understand the concepts of PGM and which type of PGM to use for which problem Tune the model's parameters and explore new models automatically Understand the basic principles of Bayesian models, from simple to advanced Transform the old linear regression model into a powerful probabilistic model Use standard industry models but with the power of PGM Understand the advanced models used throughout today's industry See how to compute posterior distribution with exact and approximate inference algorithms In Detail Probabilistic graphical models (PGM, also known as graphical models) are a marriage between probability theory and graph theory. Generally, PGMs use a graph-based representation. Two branches of graphical representations of distributions are commonly used, namely Bayesian networks and Markov networks. R has many packages to implement graphical models. We'll start by showing you how to transform a classical statistical model into a modern PGM and then look at how to do exact inference in graphical models. Proceeding, we'll introduce you to many modern R packages that will help you to perform inference on the models. We will then run a Bayesian linear regression and you'll see the advantage of going probabilistic when you want to do prediction. Next, you'll master using R packages and implementing its techniques. Finally, you'll be presented with machine learning applications that have a direct impact in many fields. Here, we'll cover clustering and the discovery of hidden information in big data, as well as two important methods, PCA and ICA, to reduce the size of big problems. Style and approach This book gives you a detailed and step-by-step explanation of each mathematical concept, which will help you build and analyze your own machine learning models and apply them to real-world problems. The mathematics is kept simple and each formula is explained thoroughly.
Learning Bayesian Networks
DOWNLOAD
Author : Richard E. Neapolitan
language : en
Publisher: Prentice Hall
Release Date : 2004
Learning Bayesian Networks written by Richard E. Neapolitan and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.
In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Journal Of Machine Learning Research
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2007
Journal Of Machine Learning Research written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Machine learning categories.
An international forum covering all areas of machine learning.
Spatial And Spatio Temporal Bayesian Models With R Inla
DOWNLOAD
Author : Marta Blangiardo
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-26
Spatial And Spatio Temporal Bayesian Models With R Inla written by Marta Blangiardo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-26 with Mathematics categories.
Spatial and Spatio-Temporal Bayesian Models withR-INLA provides a much needed, practically oriented& innovative presentation of the combination of Bayesianmethodology and spatial statistics. The authors combine anintroduction to Bayesian theory and methodology with a focus on thespatial and spatio-temporal models used within the Bayesianframework and a series of practical examples which allow the readerto link the statistical theory presented to real data problems. Thenumerous examples from the fields of epidemiology, biostatisticsand social science all are coded in the R package R-INLA, which hasproven to be a valid alternative to the commonly used Markov ChainMonte Carlo simulations
Uncertainty In Artificial Intelligence
DOWNLOAD
Author : Prakash P. Shenoy
language : en
Publisher: Morgan Kaufmann Publishers
Release Date : 1998
Uncertainty In Artificial Intelligence written by Prakash P. Shenoy and has been published by Morgan Kaufmann Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.
Canadian Journal Of Forest Research
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2006
Canadian Journal Of Forest Research written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Forests and forestry categories.
Gecco 2002
DOWNLOAD
Author : William B. Langdon
language : en
Publisher: Morgan Kaufmann
Release Date : 2002
Gecco 2002 written by William B. Langdon and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Computers categories.