Download Learn Python By Building Data Science Applications - eBooks (PDF)

Learn Python By Building Data Science Applications


Learn Python By Building Data Science Applications
DOWNLOAD

Download Learn Python By Building Data Science Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learn Python By Building Data Science Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Learn Python By Building Data Science Applications


Learn Python By Building Data Science Applications
DOWNLOAD
Author : Philipp Kats
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-30

Learn Python By Building Data Science Applications written by Philipp Kats and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-30 with Computers categories.


Understand the constructs of the Python programming language and use them to build data science projects Key FeaturesLearn the basics of developing applications with Python and deploy your first data applicationTake your first steps in Python programming by understanding and using data structures, variables, and loopsDelve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in PythonBook Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learnCode in Python using Jupyter and VS CodeExplore the basics of coding – loops, variables, functions, and classesDeploy continuous integration with Git, Bash, and DVCGet to grips with Pandas, NumPy, and scikit-learnPerform data visualization with Matplotlib, Altair, and DatashaderCreate a package out of your code using poetry and test it with PyTestMake your machine learning model accessible to anyone with the web APIWho this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.



Learn Python By Building Data Science Applications


Learn Python By Building Data Science Applications
DOWNLOAD
Author : Philipp Kats
language : en
Publisher:
Release Date : 2019-08-30

Learn Python By Building Data Science Applications written by Philipp Kats and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-30 with Computers categories.


Understand the constructs of the Python programming language and use them to build data science projects Key Features Learn the basics of developing applications with Python and deploy your first data application Take your first steps in Python programming by understanding and using data structures, variables, and loops Delve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in Python Book Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The "secret sauce" of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You'll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You'll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you'll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you'll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you'll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learn Code in Python using Jupyter and VS Code Explore the basics of coding - loops, variables, functions, and classes Deploy continuous integration with Git, Bash, and DVC Get to grips with Pandas, NumPy, and scikit-learn Perform data visualization with Matplotlib, Altair, and Datashader Create a package out of your code using poetry and test it with PyTest Make your machine learning model accessible to anyone with the web API Who this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You'll also find this book useful if you're a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.



Building Data Science Applications With Fastapi


Building Data Science Applications With Fastapi
DOWNLOAD
Author : Francois Voron
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-07-31

Building Data Science Applications With Fastapi written by Francois Voron and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-31 with Computers categories.


Learn all the features and best practices of FastAPI to build, deploy, and monitor powerful data science and AI apps, like object detection or image generation. Purchase of the print or Kindle book includes a free PDF eBook Key Features Uncover the secrets of FastAPI, including async I/O, type hinting, and dependency injection Learn to add authentication, authorization, and interaction with databases in a FastAPI backend Develop real-world projects using pre-trained AI models Book Description Building Data Science Applications with FastAPI is the go-to resource for creating efficient and dependable data science API backends. This second edition incorporates the latest Python and FastAPI advancements, along with two new AI projects – a real-time object detection system and a text-to-image generation platform using Stable Diffusion. The book starts with the basics of FastAPI and modern Python programming. You'll grasp FastAPI's robust dependency injection system, which facilitates seamless database communication, authentication implementation, and ML model integration. As you progress, you'll learn testing and deployment best practices, guaranteeing high-quality, resilient applications. Throughout the book, you'll build data science applications using FastAPI with the help of projects covering common AI use cases, such as object detection and text-to-image generation. These hands-on experiences will deepen your understanding of using FastAPI in real-world scenarios. By the end of this book, you'll be well equipped to maintain, design, and monitor applications to meet the highest programming standards using FastAPI, empowering you to create fast and reliable data science API backends with ease while keeping up with the latest advancements. What you will learn Explore the basics of modern Python and async I/O programming Get to grips with basic and advanced concepts of the FastAPI framework Deploy a performant and reliable web backend for a data science application Integrate common Python data science libraries into a web backend Integrate an object detection algorithm into a FastAPI backend Build a distributed text-to-image AI system with Stable Diffusion Add metrics and logging and learn how to monitor them Who this book is for This book is for data scientists and software developers interested in gaining knowledge of FastAPI and its ecosystem to build data science applications. Basic knowledge of data science and machine learning concepts and how to apply them in Python is recommended.



Python For Data Science


Python For Data Science
DOWNLOAD
Author : Erick Thompson
language : en
Publisher:
Release Date : 2020-11-29

Python For Data Science written by Erick Thompson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-29 with Computers categories.


Are you looking for a crash course that will help you learn Python? Do you want to master data science using Python? If yes, then keep reading! Python is one of the most popular programming languages in the word in 2020 and specially for data science. Every day people use it to do cool things like Automation, they use it in Artificial Intelligence, Machine Learning, as well as Building Applications and Websites like Instagram and Dropbox. YouTube, Pinterest, and SurveyMonkey are all built on Python. So if you are looking for a trendy job, like data scientist, Python is for you. This is a Python guide with 2 Books in 1: Python crash course Python for data analysis Python has seen an explosion in popularity in recent years, driven by several aspects that make it an incredibly versatile and intuitive language. Moreover, data analysis plays a significant job in numerous parts of your regular day to day existence today. Organizations use information to Understand Their Customer Needs and produce the Best Possible Product or Service. Python Programming Language is one of the best framework with regards to information examination. Data Scientist is the most requested job of the 21st century and Python is the most popular programming language of the 21st century. So it's pretty obvious that anyone have skills in both Data Science and Python will be in great demand in industry. You needn't bother with an exhausting and costly reading material. This guide is the best one for every readers. This guide covers: The world of data science technologies Application of machine learning Data scientist: the sexiest job in the 21st century Learning Python from scratch Data analysis with Python NumPy for numerical data processing Data visualization with Python Projects on Python And much more! Despite its simplicity, Python is also sturdy and robust enough to carry out complex scientific and mathematical tasks. Python has been designed with features that drastically simplify the visualization and analysis of data, and Python is also the go-to choice for the creation of machine learning models and artificial intelligence. Be it machine learning, data analytics, data processing, web development, enterprise software development or taking the photo of Blackhole: Python is everywhere. Beloved by the data scientists and new generation developers, Pyhton will eat the word! Ready to get started? Click the BUY NOW button!



Building Data Science Applications With Fastapi


Building Data Science Applications With Fastapi
DOWNLOAD
Author : Francois Voron
language : en
Publisher: Packt Publishing
Release Date : 2021-10-08

Building Data Science Applications With Fastapi written by Francois Voron and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-08 with categories.


Get well-versed with FastAPI features and best practices for testing, monitoring, and deployment to run high-quality and robust data science applications Key Features: Cover the concepts of the FastAPI framework, including aspects relating to asynchronous programming, type hinting, and dependency injection Develop efficient RESTful APIs for data science with modern Python Build, test, and deploy high performing data science and machine learning systems with FastAPI Book Description: FastAPI is a web framework for building APIs with Python 3.6 and its later versions based on standard Python-type hints. With this book, you'll be able to create fast and reliable data science API backends using practical examples. This book starts with the basics of the FastAPI framework and associated modern Python programming language concepts. You'll then be taken through all the aspects of the framework, including its powerful dependency injection system and how you can use it to communicate with databases, implement authentication and integrate machine learning models. Later, you'll cover best practices relating to testing and deployment to run a high-quality and robust application. You'll also be introduced to the extensive ecosystem of Python data science packages. As you progress, you'll learn how to build data science applications in Python using FastAPI. The book also demonstrates how to develop fast and efficient machine learning prediction backends and test them to achieve the best performance. Finally, you'll see how to implement a real-time face detection system using WebSockets and a web browser as a client. By the end of this FastAPI book, you'll have not only learned how to implement Python in data science projects but also how to maintain and design them to meet high programming standards with the help of FastAPI. What You Will Learn: Explore the basics of modern Python and async I/O programming Get to grips with basic and advanced concepts of the FastAPI framework Implement a FastAPI dependency to efficiently run a machine learning model Integrate a simple face detection algorithm in a FastAPI backend Integrate common Python data science libraries in a web backend Deploy a performant and reliable web backend for a data science application Who this book is for: This Python data science book is for data scientists and software developers interested in gaining knowledge of FastAPI and its ecosystem to build data science applications. Basic knowledge of data science and machine learning concepts and how to apply them in Python is recommended.



Machine Learning And Deep Learning Using Python And Tensorflow


Machine Learning And Deep Learning Using Python And Tensorflow
DOWNLOAD
Author : Venkata Reddy Konasani
language : en
Publisher: McGraw Hill Professional
Release Date : 2021-04-29

Machine Learning And Deep Learning Using Python And Tensorflow written by Venkata Reddy Konasani and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-29 with Technology & Engineering categories.


Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory



Data Science For Beginners


Data Science For Beginners
DOWNLOAD
Author : Andrew Park
language : en
Publisher:
Release Date : 2021-12-22

Data Science For Beginners written by Andrew Park and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-22 with categories.


Did you know that according to Harvard Business Review the Data Scientist is the sexiest job of the 21st century? And for a reason! If "sexy" means having rare qualities that are much in demand, data scientists are already there. They are expensive to hire and, given the very competitive market for their services, difficult to retain. There simply aren't a lot of people with their combination of scientific background and computational and analytical skills. Data Science is all about transforming data into business value using math and algorithms. And needless to say, Python is the must-know programming language of the 21st century. If you are interested in coding and Data Science, then you must know Python to succeed in these industries! Data Science for Beginners is the perfect place to start learning everything you need to succeed. Contained within these four essential books are the methods, concepts, and important practical examples to help build your foundation for excelling at the discipline that is shaping the modern word. This bundle is perfect for programmers, software engineers, project managers and those who just want to keep up with technology. With these books in your hands, you will: Learn Python from scratch including the basic operations, how to install it, data structures and functions, and conditional loops Build upon the fundamentals with advanced techniques like Object-Oriented Programming (OOP), Inheritance, and Polymorphism Discover the importance of Data Science and how to use it in real-world situations Learn the 5 steps of Data Analysis so you can comprehend and analyze data sitting right in front of you Increase your income by learning a new, valuable skill that only a select handful of people take the time to learn Discover how companies can improve their business through practical examples and explanations And Much More! This bundle is essential for anyone who wants to study Data Science and learn how the world is moving to an open-source platform, even if you have never seen a line of code in your life. Jump to the next level by learning the basics of programming that will allow you to develop a data-driven approach! Order Your Copy of the Bundle Now and Start to Develop New Valuable Skills Today!



Iot Cloud And Data Science


Iot Cloud And Data Science
DOWNLOAD
Author : S. Prasanna Devi
language : en
Publisher: Trans Tech Publications Ltd
Release Date : 2023-02-27

Iot Cloud And Data Science written by S. Prasanna Devi and has been published by Trans Tech Publications Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-27 with Computers categories.


Selected peer-reviewed full text papers from the International Research Conference on IoT, Cloud and Data Science (IRCICD'22) Selected peer-reviewed full text papers from the International Research Conference on IoT, Cloud and Data Science (IRCICD'22), May 06-07, 2022, Chennai, India



Python Programming


Python Programming
DOWNLOAD
Author : Nicholas Ayden
language : en
Publisher:
Release Date : 2019-11-09

Python Programming written by Nicholas Ayden and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-09 with categories.


Are you keen to learn Python Programming? Have you wanted to learn how to become a Python programmer? If so, this guide is the perfect match for people just like you! A general-purpose programming language, whose expansion and popularity is relatively recent. This is Python, a commitment to simplicity, versatility, and rapidity of development. Python is a platform-independent and object-oriented scripting language prepared to perform any type of programming language, from Windows applications to network servers or even web pages. Python is an interpreted language. That means that, unlike languages like C and its variants, Python does not need to be compiled before it is run. Other interpreted languages include PHP and Ruby. Writing Python code is quick but running it is often slower than compiled languages. Fortunately,Python allows the inclusion of C based extensions so bottlenecks can be optimized away and often are. The numpy package is a good example of this, it's really quite quick because a lot of the number-crunching it does isn't actually done by Python! What Is Python For? One of the main advantages of learning Python is the possibility of creating a code with great readability, which saves time and resources, which facilitates its understanding and implementation. These factors and others that you will see later, have made Python become one of the most used programming languages. From web applications to artificial intelligence, Python uses are endless. Some benefits of using Python- Python comprises of a huge standard library for most Internet platforms like Email, HTML, etc. Provide easy readability due to use of square brackets Easy-to-learn for beginners Having the built-in data types saves programming time and effort from declaring variables Inside this book, Python Programming: The Complete Guide to Learn Python for Data Science, AI, Machine Learning, GUI and More With Practical Exercises and Interview Questions, you will learn a valuable skill that will improve your coding expertise! Here's what we will talk about in this book: Python Features Basics of Python Data Structures & Object-Oriented Python File management Conditionals, Iterables & Regex in Python Simple recap projects Files & Error Handling In Python Some powerful tips and tricks for beginner Python programmers that will fast-track your journey to becoming a master And Much More! This book will introduce you to the Python programming language and make sure that after reading the guide, you shall be aware of the basics of the language and able to create simple Python programs. This book will help you to learn Python programming, from beginner to intermediate then advanced level. As such, this book will handle everything you need to build a strong understanding of the basics of Python programming language. If you've been thinking seriously about digging into programming, Python Programming: The Complete Guide to Learn Python for Data Science, AI, Machine Learning, GUI and More With Practical Exercises and Interview Questions, will get you up to speed and this guide is going to furnish you with all the information you need to start writing useful software and applications in as little time as possible. Why wait any longer? "Add to Cart" to receive your book instantly!



Python For Programmers


Python For Programmers
DOWNLOAD
Author : Paul Deitel
language : en
Publisher: Prentice Hall
Release Date : 2019-03-15

Python For Programmers written by Paul Deitel and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-15 with Computers categories.


The professional programmer’s Deitel® guide to Python® with introductory artificial intelligence case studies Written for programmers with a background in another high-level language, Python for Programmers uses hands-on instruction to teach today’s most compelling, leading-edge computing technologies and programming in Python–one of the world’s most popular and fastest-growing languages. Please read the Table of Contents diagram inside the front cover and the Preface for more details. In the context of 500+, real-world examples ranging from individual snippets to 40 large scripts and full implementation case studies, you’ll use the interactive IPython interpreter with code in Jupyter Notebooks to quickly master the latest Python coding idioms. After covering Python Chapters 1-5 and a few key parts of Chapters 6-7, you’ll be able to handle significant portions of the hands-on introductory AI case studies in Chapters 11-16, which are loaded with cool, powerful, contemporary examples. These include natural language processing, data mining Twitter® for sentiment analysis, cognitive computing with IBM® WatsonTM, supervised machine learning with classification and regression, unsupervised machine learning with clustering, computer vision through deep learning and convolutional neural networks, deep learning with recurrent neural networks, big data with Hadoop®, SparkTM and NoSQL databases, the Internet of Things and more. You’ll also work directly or indirectly with cloud-based services, including Twitter, Google TranslateTM, IBM Watson, Microsoft® Azure®, OpenMapQuest, PubNub and more. Features 500+ hands-on, real-world, live-code examples from snippets to case studies IPython + code in Jupyter® Notebooks Library-focused: Uses Python Standard Library and data science libraries to accomplish significant tasks with minimal code Rich Python coverage: Control statements, functions, strings, files, JSON serialization, CSV, exceptions Procedural, functional-style and object-oriented programming Collections: Lists, tuples, dictionaries, sets, NumPy arrays, pandas Series & DataFrames Static, dynamic and interactive visualizations Data experiences with real-world datasets and data sources Intro to Data Science sections: AI, basic stats, simulation, animation, random variables, data wrangling, regression AI, big data and cloud data science case studies: NLP, data mining Twitter®, IBM® WatsonTM, machine learning, deep learning, computer vision, Hadoop®, SparkTM, NoSQL, IoT Open-source libraries: NumPy, pandas, Matplotlib, Seaborn, Folium, SciPy, NLTK, TextBlob, spaCy, Textatistic, Tweepy, scikit-learn®, Keras and more Accompanying code examples are available here: http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/bookreg/9780135224335/9780135224335_examples.zip. Register your product for convenient access to downloads, updates, and/or corrections as they become available. See inside book for more information.