Large Scale Machine Learning With Python
DOWNLOAD
Download Large Scale Machine Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Scale Machine Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Large Scale Machine Learning With Python
DOWNLOAD
Author : Gerardus Blokdyk
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-03-29
Large Scale Machine Learning With Python written by Gerardus Blokdyk and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-29 with categories.
What is Large Scale Machine Learning with Python's impact on utilizing the best solution(s)? What sources do you use to gather information for a Large Scale Machine Learning with Python study? What situation(s) led to this Large Scale Machine Learning with Python Self Assessment? How do you manage and improve your Large Scale Machine Learning with Python work systems to deliver customer value and achieve organizational success and sustainability? Are there any constraints known that bear on the ability to perform Large Scale Machine Learning with Python work? How is the team addressing them? Defining, designing, creating, and implementing a process to solve a challenge or meet an objective is the most valuable role... In EVERY group, company, organization and department. Unless you are talking a one-time, single-use project, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' This Self-Assessment empowers people to do just that - whether their title is entrepreneur, manager, consultant, (Vice-)President, CxO etc... - they are the people who rule the future. They are the person who asks the right questions to make Large Scale Machine Learning with Python investments work better. This Large Scale Machine Learning with Python All-Inclusive Self-Assessment enables You to be that person. All the tools you need to an in-depth Large Scale Machine Learning with Python Self-Assessment. Featuring 723 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Large Scale Machine Learning with Python improvements can be made. In using the questions you will be better able to: - diagnose Large Scale Machine Learning with Python projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Large Scale Machine Learning with Python and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Large Scale Machine Learning with Python Scorecard, you will develop a clear picture of which Large Scale Machine Learning with Python areas need attention. Your purchase includes access details to the Large Scale Machine Learning with Python self-assessment dashboard download which gives you your dynamically prioritized projects-ready tool and shows your organization exactly what to do next. Your exclusive instant access details can be found in your book.
Large Scale Machine Learning With Python Complete Self Assessment Guide
DOWNLOAD
Author : Gerardus Blokdyk
language : en
Publisher:
Release Date :
Large Scale Machine Learning With Python Complete Self Assessment Guide written by Gerardus Blokdyk and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Large Scale Machine Learning With Python Complete Self Assessment Guide
DOWNLOAD
Author : Gerardus Blokdyk
language : en
Publisher: 5starcooks
Release Date : 2017-07-22
Large Scale Machine Learning With Python Complete Self Assessment Guide written by Gerardus Blokdyk and has been published by 5starcooks this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-22 with categories.
How does Large Scale Machine Learning with Python integrate with other business initiatives? What are your current levels and trends in key measures or indicators of Large Scale Machine Learning with Python product and process performance that are important to and directly serve your customers? how do these results compare with the performance of your competi tors and other organizations with similar offerings? How can we incorporate support to ensure safe and effective use of Large Scale Machine Learning with Python into the services that we provide? Meeting the Challenge: Are Missed Large Scale Machine Learning with Python opportunities Costing you Money? What tools do you use once you have decided on a Large Scale Machine Learning with Python strategy and more importantly how do you choose? Defining, designing, creating, and implementing a process to solve a business challenge or meet a business objective is the most valuable role... In EVERY company, organization and department. Unless you are talking a one-time, single-use project within a business, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' For more than twenty years, The Art of Service's Self-Assessments empower people who can do just that - whether their title is marketer, entrepreneur, manager, salesperson, consultant, business process manager, executive assistant, IT Manager, CxO etc... - they are the people who rule the future. They are people who watch the process as it happens, and ask the right questions to make the process work better. This book is for managers, advisors, consultants, specialists, professionals and anyone interested in Large Scale Machine Learning with Python assessment. All the tools you need to an in-depth Large Scale Machine Learning with Python Self-Assessment. Featuring 616 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Large Scale Machine Learning with Python improvements can be made. In using the questions you will be better able to: - diagnose Large Scale Machine Learning with Python projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Large Scale Machine Learning with Python and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Large Scale Machine Learning with Python Scorecard, you will develop a clear picture of which Large Scale Machine Learning with Python areas need attention. Included with your purchase of the book is the Large Scale Machine Learning with Python Self-Assessment downloadable resource, which contains all questions and Self-Assessment areas of this book in a ready to use Excel dashboard, including the self-assessment, graphic insights, and project planning automation - all with examples to get you started with the assessment right away. Access instructions can be found in the book. You are free to use the Self-Assessment contents in your presentations and materials for customers without asking us - we are here to help.
Large Scale Machine Learning With Python
DOWNLOAD
Author : Bastiaan Sjardin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-08-03
Large Scale Machine Learning With Python written by Bastiaan Sjardin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-03 with Computers categories.
Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
Python Real World Machine Learning
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-11-14
Python Real World Machine Learning written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-14 with Computers categories.
Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!
Machine Learning And Other Soft Computing Techniques Biomedical And Related Applications
DOWNLOAD
Author : Nguyen Hoang Phuong
language : en
Publisher: Springer Nature
Release Date : 2024-08-19
Machine Learning And Other Soft Computing Techniques Biomedical And Related Applications written by Nguyen Hoang Phuong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-19 with Technology & Engineering categories.
This book contains applications to various health-related problems, from designing and maintaining a proper diet to enhancing hygiene to analysis of mammograms and left-right brain activity to treating diseases such as diabetes and drug addictions. Health issues are very important. So naturally whatever new data processing technique appears, researchers try to apply it to health issues as well. From this viewpoint, Artificial Intelligence (AI) and Computational Intelligence (CI) techniques are no exception: they have been successfully applied to medicine, and more promising applications are on the way. Applications of AI and CI techniques to health issues are the main focus of this book. Health issues are also very delicate, because human bodies are complex organisms. No matter how interesting and promising are new ideas and new techniques, there is always a possibility of unexpected side effects. Because of this, we cannot apply untested methods to patients, and we first need to test these methods on other less critical applications. Several book chapters describe such applications—whose success paves the way for these methods to be used in biomedical situations. These applications range from human/face detection to predicting student success to predicting election results to explaining the observed intensity of space light. We hope that this book helps practitioners and researchers to learn more about computational intelligence techniques and their biomedical applications—and to further develop this important research direction.
International Conference On Innovative Computing And Communications
DOWNLOAD
Author : Deepak Gupta
language : en
Publisher: Springer Nature
Release Date : 2020-07-30
International Conference On Innovative Computing And Communications written by Deepak Gupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Technology & Engineering categories.
This book includes high-quality research papers presented at the Third International Conference on Innovative Computing and Communication (ICICC 2020), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on 21–23 February, 2020. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.
Mastering Machine Learning On Aws
DOWNLOAD
Author : Dr. Saket S.R. Mengle
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20
Mastering Machine Learning On Aws written by Dr. Saket S.R. Mengle and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.
Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.
Research Handbook On Big Data Law
DOWNLOAD
Author : Roland Vogl
language : en
Publisher: Edward Elgar Publishing
Release Date : 2021-05-28
Research Handbook On Big Data Law written by Roland Vogl and has been published by Edward Elgar Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-28 with Law categories.
This state-of-the-art Research Handbook provides an overview of research into, and the scope of current thinking in, the field of big data analytics and the law. It contains a wealth of information to survey the issues surrounding big data analytics in legal settings, as well as legal issues concerning the application of big data techniques in different domains.