Large Scale Data Analytics With Python And Spark
DOWNLOAD
Download Large Scale Data Analytics With Python And Spark PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Scale Data Analytics With Python And Spark book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Large Scale Data Analytics With Python And Spark
DOWNLOAD
Author : Isaac Triguero
language : en
Publisher: Cambridge University Press
Release Date : 2023-11-23
Large Scale Data Analytics With Python And Spark written by Isaac Triguero and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-23 with Computers categories.
Based on the authors' extensive teaching experience, this hands-on graduate-level textbook teaches how to carry out large-scale data analytics and design machine learning solutions for big data. With a focus on fundamentals, this extensively class-tested textbook walks students through key principles and paradigms for working with large-scale data, frameworks for large-scale data analytics (Hadoop, Spark), and explains how to implement machine learning to exploit big data. It is unique in covering the principles that aspiring data scientists need to know, without detail that can overwhelm. Real-world examples, hands-on coding exercises and labs combine with exceptionally clear explanations to maximize student engagement. Well-defined learning objectives, exercises with online solutions for instructors, lecture slides, and an accompanying suite of lab exercises of increasing difficulty in Jupyter Notebooks offer a coherent and convenient teaching package. An ideal teaching resource for courses on large-scale data analytics with machine learning in computer/data science departments.
Learning Spark
DOWNLOAD
Author : Holden Karau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2015-01-28
Learning Spark written by Holden Karau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-28 with Computers categories.
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Scala And Spark For Big Data Analytics
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-25
Scala And Spark For Big Data Analytics written by Md. Rezaul Karim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-25 with Computers categories.
Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.
Python Data Science Essentials
DOWNLOAD
Author : MARK JOHN LADO
language : en
Publisher: Amazon Digital Services LLC - Kdp
Release Date : 2024-03-18
Python Data Science Essentials written by MARK JOHN LADO and has been published by Amazon Digital Services LLC - Kdp this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-18 with Computers categories.
The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.
Proceedings Of Data Analytics And Management
DOWNLOAD
Author : Abhishek Swaroop
language : en
Publisher: Springer Nature
Release Date : 2024-01-02
Proceedings Of Data Analytics And Management written by Abhishek Swaroop and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-02 with Computers categories.
This book includes original unpublished contributions presented at the International Conference on Data Analytics and Management (ICDAM 2023), held at London Metropolitan University, London, UK, during June 2023. The book covers the topics in data analytics, data management, big data, computational intelligence, and communication networks. The book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students. The book is divided into four volumes.
Machine Intelligence And Data Science Engineering
DOWNLOAD
Author : Dr.Rajneesh Kumar,
language : en
Publisher: SK Research Group of Companies
Release Date : 2025-10-24
Machine Intelligence And Data Science Engineering written by Dr.Rajneesh Kumar, and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-24 with Computers categories.
Dr.Rajneesh Kumar, Assistant Professor, Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ghaziabad, Uttar Pradesh, India. Dr.Naresh Sharma, Assistant Professor, Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ghaziabad, Uttar Pradesh, India. Ms.Madhuri Sharma, Assistant Professor, Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ghaziabad, Uttar Pradesh, India. Dr.Vinam Tomar, Assistant Professor, Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ghaziabad, Uttar Pradesh, India.
Practical Big Data Analytics
DOWNLOAD
Author : Nataraj Dasgupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-15
Practical Big Data Analytics written by Nataraj Dasgupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.
Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Artificial Intelligence Enabled Digital Twin For Smart Manufacturing
DOWNLOAD
Author : Amit Kumar Tyagi
language : en
Publisher: John Wiley & Sons
Release Date : 2024-10-15
Artificial Intelligence Enabled Digital Twin For Smart Manufacturing written by Amit Kumar Tyagi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-15 with Computers categories.
An essential book on the applications of AI and digital twin technology in the smart manufacturing sector. In the rapidly evolving landscape of modern manufacturing, the integration of cutting-edge technologies has become imperative for businesses to remain competitive and adaptive. Among these technologies, Artificial Intelligence (AI) stands out as a transformative force, revolutionizing traditional manufacturing processes and making the way for the era of smart manufacturing. At the heart of this technological revolution lies the concept of the Digital Twin—an innovative approach that bridges the physical and digital realms of manufacturing. By creating a virtual representation of physical assets, processes, and systems, organizations can gain unprecedented insights, optimize operations, and enhance decision-making capabilities. This timely book explores the convergence of AI and Digital Twin technologies to empower smart manufacturing initiatives. Through a comprehensive examination of principles, methodologies, and practical applications, it explains the transformative potential of AI-enabled Digital Twins across various facets of the manufacturing lifecycle. From design and prototyping to production and maintenance, AI-enabled Digital Twins offer multifaceted advantages that redefine traditional paradigms. By leveraging AI algorithms for data analysis, predictive modeling, and autonomous optimization, manufacturers can achieve unparalleled levels of efficiency, quality, and agility. This book explains how AI enhances the capabilities of Digital Twins by creating a powerful tool that can optimize production processes, improve product quality, and streamline operations. Note that the Digital Twin in this context is a virtual representation of a physical manufacturing system, including machines, processes, and products. It continuously collects real-time data from sensors and other sources, allowing it to mirror the physical system’s behavior and performance. What sets this Digital Twin apart is the incorporation of AI algorithms and machine learning techniques that enable it to analyze and predict outcomes, recommend improvements, and autonomously make adjustments to enhance manufacturing efficiency. This book outlines essential elements, like real-time monitoring of machines, predictive analytics of machines and data, optimization of the resources, quality control of the product, resource management, decision support (timely or quickly accurate decisions). Moreover, this book elucidates the symbiotic relationship between AI and Digital Twins, highlighting how AI augments the capabilities of Digital Twins by infusing them with intelligence, adaptability, and autonomy. Hence, this book promises to enhance competitiveness, reduce operational costs, and facilitate innovation in the manufacturing industry. By harnessing AI’s capabilities in conjunction with Digital Twins, manufacturers can achieve a more agile and responsive production environment, ultimately driving the evolution of smart factories and Industry 4.0/5.0. Audience This book has a wide audience in computer science, artificial intelligence, and manufacturing engineering, as well as engineers in a variety of industrial manufacturing industries. It will also appeal to economists and policymakers working on the circular economy, clean tech investors, industrial decision-makers, and environmental professionals.
Comprehensive Geographic Information Systems
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2017-07-21
Comprehensive Geographic Information Systems written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-21 with Science categories.
Geographical Information Systems, Three Volume Set is a computer system used to capture, store, analyze and display information related to positions on the Earth’s surface. It has the ability to show multiple types of information on multiple geographical locations in a single map, enabling users to assess patterns and relationships between different information points, a crucial component for multiple aspects of modern life and industry. This 3-volumes reference provides an up-to date account of this growing discipline through in-depth reviews authored by leading experts in the field. VOLUME EDITORSThomas J. CovaThe University of Utah, Salt Lake City, UT, United StatesMing-Hsiang TsouSan Diego State University, San Diego, CA, United StatesGeorg BarethUniversity of Cologne, Cologne, GermanyChunqiao SongUniversity of California, Los Angeles, CA, United StatesYan SongUniversity of North Carolina at Chapel Hill, Chapel Hill, NC, United StatesKai CaoNational University of Singapore, SingaporeElisabete A. SilvaUniversity of Cambridge, Cambridge, United Kingdom Covers a rapidly expanding discipline, providing readers with a detailed overview of all aspects of geographic information systems, principles and applications Emphasizes the practical, socioeconomic applications of GIS Provides readers with a reliable, one-stop comprehensive guide, saving them time in searching for the information they need from different sources
Hands On Big Data Analytics With Pyspark
DOWNLOAD
Author : Rudy Lai
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-03-29
Hands On Big Data Analytics With Pyspark written by Rudy Lai and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-29 with Computers categories.
Use PySpark to easily crush messy data at-scale and discover proven techniques to create testable, immutable, and easily parallelizable Spark jobs Key FeaturesWork with large amounts of agile data using distributed datasets and in-memory cachingSource data from all popular data hosting platforms, such as HDFS, Hive, JSON, and S3Employ the easy-to-use PySpark API to deploy big data Analytics for productionBook Description Apache Spark is an open source parallel-processing framework that has been around for quite some time now. One of the many uses of Apache Spark is for data analytics applications across clustered computers. In this book, you will not only learn how to use Spark and the Python API to create high-performance analytics with big data, but also discover techniques for testing, immunizing, and parallelizing Spark jobs. You will learn how to source data from all popular data hosting platforms, including HDFS, Hive, JSON, and S3, and deal with large datasets with PySpark to gain practical big data experience. This book will help you work on prototypes on local machines and subsequently go on to handle messy data in production and at scale. This book covers installing and setting up PySpark, RDD operations, big data cleaning and wrangling, and aggregating and summarizing data into useful reports. You will also learn how to implement some practical and proven techniques to improve certain aspects of programming and administration in Apache Spark. By the end of the book, you will be able to build big data analytical solutions using the various PySpark offerings and also optimize them effectively. What you will learnGet practical big data experience while working on messy datasetsAnalyze patterns with Spark SQL to improve your business intelligenceUse PySpark's interactive shell to speed up development timeCreate highly concurrent Spark programs by leveraging immutabilityDiscover ways to avoid the most expensive operation in the Spark API: the shuffle operationRe-design your jobs to use reduceByKey instead of groupByCreate robust processing pipelines by testing Apache Spark jobsWho this book is for This book is for developers, data scientists, business analysts, or anyone who needs to reliably analyze large amounts of large-scale, real-world data. Whether you're tasked with creating your company's business intelligence function or creating great data platforms for your machine learning models, or are looking to use code to magnify the impact of your business, this book is for you.