Java Deep Learning Cookbook
DOWNLOAD
Download Java Deep Learning Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Java Deep Learning Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Java Deep Learning Cookbook
DOWNLOAD
Author : Rahul Raj
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-08
Java Deep Learning Cookbook written by Rahul Raj and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-08 with Computers categories.
Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook Description Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learnPerform data normalization and wrangling using DL4JBuild deep neural networks using DL4JImplement CNNs to solve image classification problemsTrain autoencoders to solve anomaly detection problems using DL4JPerform benchmarking and optimization to improve your model's performanceImplement reinforcement learning for real-world use cases using RL4JLeverage the capabilities of DL4J in distributed systemsWho this book is for If you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book.
Java Deep Learning Projects
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-29
Java Deep Learning Projects written by Md. Rezaul Karim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-29 with Computers categories.
Build and deploy powerful neural network models using the latest Java deep learning libraries Key Features Understand DL with Java by implementing real-world projects Master implementations of various ANN models and build your own DL systems Develop applications using NLP, image classification, RL, and GPU processing Book Description Java is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts. Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines. You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you’ll be able to use their features to build and deploy projects on distributed computing environments. You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks. By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems. What you will learn Master deep learning and neural network architectures Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs Train ML agents to learn from data using deep reinforcement learning Use factorization machines for advanced movie recommendations Train DL models on distributed GPUs for faster deep learning with Spark and DL4J Ease your learning experience through 69 FAQs Who this book is for If you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.
Java Data Science Cookbook
DOWNLOAD
Author : Rushdi Shams
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-03-28
Java Data Science Cookbook written by Rushdi Shams and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-28 with Computers categories.
Recipes to help you overcome your data science hurdles using Java About This Book This book provides modern recipes in small steps to help an apprentice cook become a master chef in data science Use these recipes to obtain, clean, analyze, and learn from your data Learn how to get your data science applications to production and enterprise environments effortlessly Who This Book Is For This book is for Java developers who are familiar with the fundamentals of data science and want to improve their skills to become a pro. What You Will Learn Find out how to clean and make datasets ready so you can acquire actual insights by removing noise and outliers Develop the skills to use modern machine learning techniques to retrieve information and transform data to knowledge. retrieve information from large amount of data in text format. Familiarize yourself with cutting-edge techniques to store and search large volumes of data and retrieve information from large amounts of data in text format Develop basic skills to apply big data and deep learning technologies on large volumes of data Evolve your data visualization skills and gain valuable insights from your data Get to know a step-by-step formula to develop an industry-standard, large-scale, real-life data product Gain the skills to visualize data and interact with users through data insights In Detail If you are looking to build data science models that are good for production, Java has come to the rescue. With the aid of strong libraries such as MLlib, Weka, DL4j, and more, you can efficiently perform all the data science tasks you need to. This unique book provides modern recipes to solve your common and not-so-common data science-related problems. We start with recipes to help you obtain, clean, index, and search data. Then you will learn a variety of techniques to analyze, learn from, and retrieve information from data. You will also understand how to handle big data, learn deeply from data, and visualize data. Finally, you will work through unique recipes that solve your problems while taking data science to production, writing distributed data science applications, and much more—things that will come in handy at work. Style and approach This book contains short yet very effective recipes to solve most common problems. Some recipes cater to very specific, rare pain points. The recipes cover different data sets and work very closely to real production environments
Hands On Java Deep Learning For Computer Vision
DOWNLOAD
Author : Klevis Ramo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-21
Hands On Java Deep Learning For Computer Vision written by Klevis Ramo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.
Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.
Deep Learning Practical Neural Networks With Java
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-08
Deep Learning Practical Neural Networks With Java written by Yusuke Sugomori and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-08 with Computers categories.
Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application
Deep Learning Practical Neural Networks With Java
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher:
Release Date : 2017-06-08
Deep Learning Practical Neural Networks With Java written by Yusuke Sugomori and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-08 with Computers categories.
Build and run intelligent applications by leveraging key Java machine learning librariesAbout This Book* Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries.* Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications* This step-by-step guide will help you solve real-world problems and links neural network theory to their applicationWho This Book Is ForThis course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life.What You Will Learn* Get a practical deep dive into machine learning and deep learning algorithms* Explore neural networks using some of the most popular Deep Learning frameworks* Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms* Apply machine learning to fraud, anomaly, and outlier detection* Experiment with deep learning concepts, algorithms, and the toolbox for deep learning* Select and split data sets into training, test, and validation, and explore validation strategies* Apply the code generated in practical examples, including weather forecasting and pattern recognitionIn DetailMachine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work.The course provides you with highly practical content explaining deep learning with Java, from the following Packt books:1. Java Deep Learning Essentials2. Machine Learning in Java3. Neural Network Programming with Java, Second EditionStyle and approachThis course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application
Deep Learning Cookbook
DOWNLOAD
Author : Douwe Osinga
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-06-05
Deep Learning Cookbook written by Douwe Osinga and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-05 with Computers categories.
Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You’ll learn how to: Create applications that will serve real users Use word embeddings to calculate text similarity Build a movie recommender system based on Wikipedia links Learn how AIs see the world by visualizing their internal state Build a model to suggest emojis for pieces of text Reuse pretrained networks to build an inverse image search service Compare how GANs, autoencoders and LSTMs generate icons Detect music styles and index song collections
Keras Deep Learning Cookbook
DOWNLOAD
Author : Rajdeep Dua
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Keras Deep Learning Cookbook written by Rajdeep Dua and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Leverage the power of deep learning and Keras to develop smarter and more efficient data models Key FeaturesUnderstand different neural networks and their implementation using KerasExplore recipes for training and fine-tuning your neural network modelsPut your deep learning knowledge to practice with real-world use-cases, tips, and tricksBook Description Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning What you will learnInstall and configure Keras in TensorFlowMaster neural network programming using the Keras library Understand the different Keras layers Use Keras to implement simple feed-forward neural networks, CNNs and RNNsWork with various datasets and models used for image and text classificationDevelop text summarization and reinforcement learning models using KerasWho this book is for Keras Deep Learning Cookbook is for you if you are a data scientist or machine learning expert who wants to find practical solutions to common problems encountered while training deep learning models. A basic understanding of Python and some experience in machine learning and neural networks is required for this book.
Deep Learning With Java
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher: Packt Publishing
Release Date : 2016-05-31
Deep Learning With Java written by Yusuke Sugomori and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-31 with Computers categories.
Solve complex data science tasks through practical applications of deep learning with JavaAbout This Book*Introduces modern machine learning techniques, and dives into deep learning algorithms for practical applications*Build from scratch and library-oriented implementations with Java to fully grasp the structure of deep learning*Get to grips with latest deep learning techniques and learn to implement the core mathematics neededWho This Book Is ForThis book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big data environment.What You Will Learn*Get a practical deep dive into machine learning and deep learning algorithms*Implement machine learning algorithms related to deep learning*Overcome the difficulties of neural networks using deep learning*Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms*Discover more deep learning algorithms with Dropout and Convolutional Neural Networks*Gain an insight into the deep learning library DL4J and its practical uses*Get to know device strategies to use deep learning algorithms and libraries in the real world*Explore deep learning further with Theano and CaffeIn DetailWith an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. Deep learning has provided a revolutionary step to actualize AI. However, deep learning is still under active research and is considered complex and difficult.Starting with an introduction to basic machine learning algorithms (related to deep learning), this book will help you understand the core concepts and mathematics of deep learning. We will quickly move on to explore neural networks and identify how to tackle challenges in larger networks using advanced algorithms. We will learn about the DL4J library and apply deep learning to various real-world use cases. Taking a hands-on practical approach, we will solve challenging problems in image processing, speech recognition, language modeling, and a wide variety of scenarios.By the end of the book, we will have worked through practical examples following the best practices in Java for deep learning. As bonus content, we will discuss and explore other deep learning areas such as Theano and Caffe.
Natural Language Processing With Java Cookbook
DOWNLOAD
Author : Richard M. Reese
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-25
Natural Language Processing With Java Cookbook written by Richard M. Reese and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-25 with Computers categories.
A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key FeaturesPerform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operationsBook Description Natural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon’s AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learnExplore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languagesWho this book is for This book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.