Ipython Interactive Computing And Visualization Cookbook
DOWNLOAD
Download Ipython Interactive Computing And Visualization Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ipython Interactive Computing And Visualization Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Ipython Interactive Computing And Visualization Cookbook
DOWNLOAD
Author : Cyrille Rossant
language : en
Publisher: Packt Publishing Ltd
Release Date : 2014-09-25
Ipython Interactive Computing And Visualization Cookbook written by Cyrille Rossant and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-25 with Computers categories.
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Ipython Interactive Computing And Visualization Cookbook Second Edition
DOWNLOAD
Author : Cyrille Rossant
language : en
Publisher:
Release Date : 2018-01-31
Ipython Interactive Computing And Visualization Cookbook Second Edition written by Cyrille Rossant and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with categories.
Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Ipython Interactive Computing And Visualization Cookbook
DOWNLOAD
Author : Cyrille Rossant
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-31
Ipython Interactive Computing And Visualization Cookbook written by Cyrille Rossant and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with Computers categories.
Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Learning Ipython For Interactive Computing And Data Visualization
DOWNLOAD
Author : Cyrille Rossant
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-10-21
Learning Ipython For Interactive Computing And Data Visualization written by Cyrille Rossant and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-21 with Computers categories.
Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Numerical Python
DOWNLOAD
Author : Robert Johansson
language : en
Publisher: Apress
Release Date : 2015-10-07
Numerical Python written by Robert Johansson and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-07 with Computers categories.
Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more. After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games. Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.
Mastering Pandas For Finance
DOWNLOAD
Author : Michael Heydt
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-05-25
Mastering Pandas For Finance written by Michael Heydt and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-25 with Computers categories.
If you are interested in quantitative finance, financial modeling, and trading, or simply want to learn how Python and pandas can be applied to finance, then this book is ideal for you. Some knowledge of Python and pandas is assumed. Interest in financial concepts is helpful, but no prior knowledge is expected.
Mastering Julia
DOWNLOAD
Author : Malcolm Sherrington
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-07-22
Mastering Julia written by Malcolm Sherrington and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-22 with Computers categories.
Julia is a well-constructed programming language with fast execution speed, eliminating the classic problem of performing analysis in one language and translating it for performance into a second. This book will help you develop and enhance your programming skills in Julia to solve real-world automation challenges. This book starts off with a refresher on installing and running Julia on different platforms. Next, you will compare the different ways of working with Julia and explore Julia's key features in-depth by looking at design and build. You will see how data works using simple statistics and analytics, and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks and observe how Julia can cooperate with external processes in order to enhance graphics and data visualization. Finally, you will look into meta-programming and learn how it adds great power to the language and establish networking and distributed computing with Julia.
Natural Language Processing With Tensorflow
DOWNLOAD
Author : Thushan Ganegedara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31
Natural Language Processing With Tensorflow written by Thushan Ganegedara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.
Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.
Jupyter Cookbook
DOWNLOAD
Author : Dan Toomey
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-04-30
Jupyter Cookbook written by Dan Toomey and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-30 with Computers categories.
Leverage the power of the popular Jupyter notebooks to simplify your data science tasks without any hassle Key Features Create and share interactive documents with live code, text and visualizations Integrate popular programming languages such as Python, R, Julia, Scala with Jupyter Develop your widgets and interactive dashboards with these innovative recipes Book Description Jupyter has garnered a strong interest in the data science community of late, as it makes common data processing and analysis tasks much simpler. This book is for data science professionals who want to master various tasks related to Jupyter to create efficient, easy-to-share, scientific applications. The book starts with recipes on installing and running the Jupyter Notebook system on various platforms and configuring the various packages that can be used with it. You will then see how you can implement different programming languages and frameworks, such as Python, R, Julia, JavaScript, Scala, and Spark on your Jupyter Notebook. This book contains intuitive recipes on building interactive widgets to manipulate and visualize data in real time, sharing your code, creating a multi-user environment, and organizing your notebook. You will then get hands-on experience with Jupyter Labs, microservices, and deploying them on the web. By the end of this book, you will have taken your knowledge of Jupyter to the next level to perform all key tasks associated with it. What you will learn Install Jupyter and configure engines for Python, R, Scala and more Access and retrieve data on Jupyter Notebooks Create interactive visualizations and dashboards for different scenarios Convert and share your dynamic codes using HTML, JavaScript, Docker, and more Create custom user data interactions using various Jupyter widgets Manage user authentication and file permissions Interact with Big Data to perform numerical computing and statistical modeling Get familiar with Jupyter's next-gen user interface - JupyterLab Who this book is for This cookbook is for data science professionals, developers, technical data analysts, and programmers who want to execute technical coding, visualize output, and do scientific computing in one tool. Prior understanding of data science concepts will be helpful, but not mandatory, to use this book.
Learning Ipython For Interactive Computing And Data Visualization Second Edition
DOWNLOAD
Author : Cyrille Rossant
language : en
Publisher:
Release Date : 2015
Learning Ipython For Interactive Computing And Data Visualization Second Edition written by Cyrille Rossant and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Computer graphics categories.
IPython provides a rich architecture for interactive computing, and as a Python developer you can take advantage of this practical hands-on guide to make yourself an expert. Covers numerical computing, data analysis, and more. Overview A practical step-by-step tutorial which will help you to replace the Python console with the powerful IPython command-line interface Use the IPython notebook to modernize the way you interact with Python Perform highly efficient computations with NumPy and Pandas Optimize your code using parallel computing and Cython In Detail You already use Python as a scripting language, but did you know it is also increasingly used for scientific computing and data analysis? Interactive programming is essential in such exploratory tasks and IPython is the perfect tool for that. Once you've learnt it, you won't be able to live without it. "Learning IPython for Interactive Computing and Data Visualization" is a practical, hands-on, example-driven tutorial to considerably improve your productivity during interactive Python sessions, and shows you how to effectively use IPython for interactive computing and data analysis. This book covers all aspects of IPython, from the highly powerful interactive Python console to the numerical and visualization features that are commonly associated with IPython. You will learn how IPython lets you perform efficient vectorized computations, through examples covering numerical simulations with NumPy, data analysis with Pandas, and visualization with Matplotlib. You will also discover how IPython can be conveniently used to optimize your code using parallel computing and dynamic compilation in C with Cython. "Learning IPython for Interactive Computing and Data Visualization" will allow you to optimize your productivity in interactive Python sessions. What you will learn from this book Debug your code from the IPython console Benchmark and profile your code from IPython Perform efficient vectorized computations with NumPy Analyze data tables with Pandas Create visualizations with Matplotlib Parallelize your code easily with IPython Customize IPython and create your own magic commands Accelerate your Python code using dynamic C compilation with Cython Approach A practical hands-on guide which focuses on interactive programming, numerical computing, and data analysis with IPython. Who this book is written for This book is for Python developers who use Python as a scripting language or for software development, and are interested in learning IPython for increasing their productivity during interactive sessions in the console. Knowledge of Python is required, whereas no knowledge of IPython is necessary.