Download Introduction To Deep Learning Using R - eBooks (PDF)

Introduction To Deep Learning Using R


Introduction To Deep Learning Using R
DOWNLOAD

Download Introduction To Deep Learning Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Deep Learning Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Deep Learning Using R


Introduction To Deep Learning Using R
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2017-07-19

Introduction To Deep Learning Using R written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-19 with Computers categories.


Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You'll Learn Understand the intuition and mathematics that power deep learning models Utilize various algorithms using the R programming language and its packages Use best practices for experimental design and variable selection Practice the methodology to approach and effectively solve problems as a data scientist Evaluate the effectiveness of algorithmic solutions and enhance their predictive power Who This Book Is For Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.



Deep Learning With R Second Edition


Deep Learning With R Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2022-09-13

Deep Learning With R Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-13 with Computers categories.


Deep learning from the ground up using R and the powerful Keras library! In Deep Learning with R, Second Edition you will learn: Deep learning from first principles Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation Deep Learning with R, Second Edition shows you how to put deep learning into action. It’s based on the revised new edition of François Chollet’s bestselling Deep Learning with Python. All code and examples have been expertly translated to the R language by Tomasz Kalinowski, who maintains the Keras and Tensorflow R packages at RStudio. Novices and experienced ML practitioners will love the expert insights, practical techniques, and important theory for building neural networks. About the technology Deep learning has become essential knowledge for data scientists, researchers, and software developers. The R language APIs for Keras and TensorFlow put deep learning within reach for all R users, even if they have no experience with advanced machine learning or neural networks. This book shows you how to get started on core DL tasks like computer vision, natural language processing, and more using R. About the book Deep Learning with R, Second Edition is a hands-on guide to deep learning using the R language. As you move through this book, you’ll quickly lock in the foundational ideas of deep learning. The intuitive explanations, crisp illustrations, and clear examples guide you through core DL skills like image processing and text manipulation, and even advanced features like transformers. This revised and expanded new edition is adapted from Deep Learning with Python, Second Edition by François Chollet, the creator of the Keras library. What's inside Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation About the reader For readers with intermediate R skills. No previous experience with Keras, TensorFlow, or deep learning is required. About the author François Chollet is a software engineer at Google and creator of Keras. Tomasz Kalinowski is a software engineer at RStudio and maintainer of the Keras and Tensorflow R packages. J.J. Allaire is the founder of RStudio, and the author of the first edition of this book. Table of Contents 1 What is deep learning? 2 The mathematical building blocks of neural networks 3 Introduction to Keras and TensorFlow 4 Getting started with neural networks: Classification and regression 5 Fundamentals of machine learning 6 The universal workflow of machine learning 7 Working with Keras: A deep dive 8 Introduction to deep learning for computer vision 9 Advanced deep learning for computer vision 10 Deep learning for time series 11 Deep learning for text 12 Generative deep learning 13 Best practices for the real world 14 Conclusions



Deep Learning For Business With R


Deep Learning For Business With R
DOWNLOAD
Author : N. Lewis
language : en
Publisher:
Release Date : 2016-08-31

Deep Learning For Business With R written by N. Lewis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-31 with categories.


Master Deep Learning & Leverage Business Analytics - the Easy Way! Deep Learning for Business With R takes you on a gentle, fun and unhurried journey to building your own deep neural network models for business use in R. Using plain language, it offers an intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. BUSINESS ANALYTICS FAST! This book is an ideal introduction to deep learning for business analytics. It is designed to be accessible. It will teach you, in simple and easy-to-understand terms, how to take advantage of deep learning to enhance business outcomes. NO EXPERIENCE REQUIRED I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep neural networks for business problems explained in plain language, and try them out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. QUICK AND EASY: Deep Learning is little more than using straight-forward steps to process data into actionable insight. And in Deep Learning for Business with R, author Dr. N.D Lewis will show you how that's done. It's easier than you think. Through a simple to follow process you will learn how to build deep neural network models for business problems in R. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. TAKE THE SHORTCUT: R is easy to use, available on all major operating systems and free! Each chapter covers, step by step, a different aspect of deep neural networks. You get your hands dirty as you work through some challenging real world business issues. YOU'LL LEARN HOW TO: Unleash the power of Deep Neural Networks for classifying the popularity of online news stories.. Develop hands on solutions for assessing customer churn.. Design successful applications for modeling customer brand choice. Master techniques for efficient product demand forecasting. Deploy deep neural networks to predict credit card expenditure. Adopt winning solutions to forecast the value of automobiles. ACCELERATE YOUR PROGRESS If you want to accelerate your progress and act on what you have learned, this book is the place to get started. It reveals how deep neural networks work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful and free R programming language. Everything you need to get started is contained within this book. Deep Learning for Business With R is your very own hands on practical, tactical, easy to follow guide to mastery Buy this book today your next big breakthrough using deep neural networks is only a page away!



R Deep Learning Essentials


R Deep Learning Essentials
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-24

R Deep Learning Essentials written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-24 with Computers categories.


Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.



Hands On Deep Learning With R


Hands On Deep Learning With R
DOWNLOAD
Author : Michael Pawlus
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-04-24

Hands On Deep Learning With R written by Michael Pawlus and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-24 with Computers categories.


Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet Key FeaturesUnderstand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problemImprove models using parameter tuning, feature engineering, and ensemblingApply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domainsBook Description Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming. This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems. By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms. What you will learnDesign a feedforward neural network to see how the activation function computes an outputCreate an image recognition model using convolutional neural networks (CNNs)Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithmApply text cleaning techniques to remove uninformative text using NLPBuild, train, and evaluate a GAN model for face generationUnderstand the concept and implementation of reinforcement learning in RWho this book is for This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.



Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning


Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning
DOWNLOAD
Author : Editor IJSMI
language : en
Publisher: International Journal of Statistics and Medical Informatics
Release Date : 2019-02-09

Deep Learning Models And Its Application An Overview With The Help Of R Software Second In Series Machine Learning written by Editor IJSMI and has been published by International Journal of Statistics and Medical Informatics this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-09 with Computers categories.


Deep Learning Models and its application: An overview with the help of R softwarePrefaceDeep learning models are widely used in different fields due to its capability to handle large and complex datasets and produce the desired results with more accuracy at a greater speed. In Deep learning models, features are selected automatically through the iterative process wherein the model learns the features by going deep into the dataset and selects the features to be modeled. In the traditional models the features of the dataset needs to be specified in advance. The Deep Learning algorithms are derived from Artificial Neural Network concepts and it is a part of broader Machine Learning Models. This book intends to provide an overview of Deep Learning models, its application in the areas of image recognition & classification, sentiment analysis, natural language processing, stock market prediction using R statistical software package, an open source software package. The book also includes an introduction to python software package which is also open source software for the benefit of the users.This books is a second book in series after the author’s first book- Machine Learning: An Overview with the Help of R Software https://www.amazon.com/dp/B07KQSN447EditorInternational Journal of Statistics and Medical Informaticswww.ijsmi.com/book.php



Deep Learning Made Easy With R


Deep Learning Made Easy With R
DOWNLOAD
Author : N. D. Lewis
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-01-10

Deep Learning Made Easy With R written by N. D. Lewis and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-10 with categories.


Master Deep Learning with this fun, practical, hands on guide. With the explosion of big data deep learning is now on the radar. Large companies such as Google, Microsoft, and Facebook have taken notice, and are actively growing in-house deep learning teams. Other large corporations are quickly building out their own teams. If you want to join the ranks of today's top data scientists take advantage of this valuable book. It will help you get started. It reveals how deep learning models work, and takes you under the hood with an easy to follow process showing you how to build them faster than you imagined possible using the powerful, free R predictive analytics package. Bestselling decision scientist Dr. N.D Lewis shows you the shortcut up the steep steps to the very top. It's easier than you think. Through a simple to follow process you will learn how to build the most successful deep learning models used for learning from data. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful applications. If you want to accelerate your progress, discover the best in deep learning and act on what you have learned, this book is the place to get started. YOU'LL LEARN HOW TO: Understand Deep Neural Networks Use Autoencoders Unleash the power of Stacked Autoencoders Leverage the Restricted Boltzmann Machine Develop Recurrent Neural Networks Master Deep Belief Networks Everything you need to get started is contained within this book. It is your detailed, practical, tactical hands on guide - the ultimate cheat sheet for deep learning mastery. A book for everyone interested in machine learning, predictive analytic techniques, neural networks and decision science. Start building smarter models today using R! Buy the book today. Your next big breakthrough using deep learning is only a page away!



Introduction To Machine Learning With R


Introduction To Machine Learning With R
DOWNLOAD
Author : Scott Burger
language : en
Publisher:
Release Date : 2018

Introduction To Machine Learning With R written by Scott Burger and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with R (Computer program language) categories.


Machine learning can be a difficult subject if you’re not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You’ll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret. By developing a familiarity with topics like understanding the difference between regression and classification models, you’ll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning. Understand the major parts of machine learning algorithms Recognize how machine learning can be used to solve a problem in a simple manner Figure out when to use certain machine learning algorithms versus others Learn how to operationalize algorithms with cutting edge packages



Ckbs 90


Ckbs 90
DOWNLOAD
Author : S.M. Deen
language : en
Publisher: Springer
Release Date : 1991

Ckbs 90 written by S.M. Deen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Computers categories.


This is the first international conference aimed at bringing the distributed database and distributed AI (DAD experts together, from both academia and industry, in order to discuss the issues of the next generation of knowledge based systems, namely Cooperating Knowledge Based Systems or CKBS for short. As the area of CKBS is new, we intended it to be an ideas conference - a conference where interesting new ideas, rather than results from completed projects, are explored, discussed, and debated. The conference was organised by the DAKE Centre. This is an interdisciplinary centre at the University of Keele for research and development in Data and Knowledge Engineering (DAKE). The Centre draws most of its strength from the Department of Computer Science which also provides administrative support for the activities of the Centre, although its membership is spread over several departments. The Centre has three main streams of research activities, namely: Large Knowledge Bases Software Engineering Neural Networks The Large Knowledge Base group, which provided the focus for this conference, is active in a number of research areas relating to data and knowledge bases, spanning from distributed databases to cooperations among data and knowledge bases. The current research topics include integration of data and knowledge bases and coopera ting knowledge based systems, with several major projects in the latter (see the entries under the Poster Session given below).



Deep Learning With R For Beginners


Deep Learning With R For Beginners
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-20

Deep Learning With R For Beginners written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Computers categories.


Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key FeaturesGet to grips with the fundamentals of deep learning and neural networksUse R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processingImplement effective deep learning systems in R with the help of end-to-end projectsBook Description Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you’ll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you’ll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you’ll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. This Learning Path includes content from the following Packt products: R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark HodnettR Deep Learning Projects by Yuxi (Hayden) Liu and Pablo MaldonadoWhat you will learnImplement credit card fraud detection with autoencodersTrain neural networks to perform handwritten digit recognition using MXNetReconstruct images using variational autoencodersExplore the applications of autoencoder neural networks in clustering and dimensionality reductionCreate natural language processing (NLP) models using Keras and TensorFlow in RPrevent models from overfitting the data to improve generalizabilityBuild shallow neural network prediction modelsWho this book is for This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.