Download Inside Deep Learning - eBooks (PDF)

Inside Deep Learning


Inside Deep Learning
DOWNLOAD

Download Inside Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Inside Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Inside Deep Learning


Inside Deep Learning
DOWNLOAD
Author : Edward Raff
language : en
Publisher: Simon and Schuster
Release Date : 2022-07-05

Inside Deep Learning written by Edward Raff and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-05 with Computers categories.


Journey through the theory and practice of modern deep learning, and apply innovative techniques to solve everyday data problems. In Inside Deep Learning, you will learn how to: Implement deep learning with PyTorch Select the right deep learning components Train and evaluate a deep learning model Fine tune deep learning models to maximize performance Understand deep learning terminology Adapt existing PyTorch code to solve new problems Inside Deep Learning is an accessible guide to implementing deep learning with the PyTorch framework. It demystifies complex deep learning concepts and teaches you to understand the vocabulary of deep learning so you can keep pace in a rapidly evolving field. No detail is skipped—you’ll dive into math, theory, and practical applications. Everything is clearly explained in plain English. About the technology Deep learning doesn’t have to be a black box! Knowing how your models and algorithms actually work gives you greater control over your results. And you don’t have to be a mathematics expert or a senior data scientist to grasp what’s going on inside a deep learning system. This book gives you the practical insight you need to understand and explain your work with confidence. About the book Inside Deep Learning illuminates the inner workings of deep learning algorithms in a way that even machine learning novices can understand. You’ll explore deep learning concepts and tools through plain language explanations, annotated code, and dozens of instantly useful PyTorch examples. Each type of neural network is clearly presented without complex math, and every solution in this book can run using readily available GPU hardware! What's inside Select the right deep learning components Train and evaluate a deep learning model Fine tune deep learning models to maximize performance Understand deep learning terminology About the reader For Python programmers with basic machine learning skills. About the author Edward Raff is a Chief Scientist at Booz Allen Hamilton, and the author of the JSAT machine learning library. Table of Contents PART 1 FOUNDATIONAL METHODS 1 The mechanics of learning 2 Fully connected networks 3 Convolutional neural networks 4 Recurrent neural networks 5 Modern training techniques 6 Common design building blocks PART 2 BUILDING ADVANCED NETWORKS 7 Autoencoding and self-supervision 8 Object detection 9 Generative adversarial networks 10 Attention mechanisms 11 Sequence-to-sequence 12 Network design alternatives to RNNs 13 Transfer learning 14 Advanced building blocks



Database Systems For Advanced Applications


Database Systems For Advanced Applications
DOWNLOAD
Author : Yunmook Nah
language : en
Publisher: Springer Nature
Release Date : 2020-09-21

Database Systems For Advanced Applications written by Yunmook Nah and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Computers categories.


The 4 volume set LNCS 12112-12114 constitutes the papers of the 25th International Conference on Database Systems for Advanced Applications which will be held online in September 2020. The 119 full papers presented together with 19 short papers plus 15 demo papers and 4 industrial papers in this volume were carefully reviewed and selected from a total of 487 submissions. The conference program presents the state-of-the-art R&D activities in database systems and their applications. It provides a forum for technical presentations and discussions among database researchers, developers and users from academia, business and industry.



Handbook Of Research On Deep Learning Techniques For Cloud Based Industrial Iot


Handbook Of Research On Deep Learning Techniques For Cloud Based Industrial Iot
DOWNLOAD
Author : Swarnalatha, P.
language : en
Publisher: IGI Global
Release Date : 2023-07-03

Handbook Of Research On Deep Learning Techniques For Cloud Based Industrial Iot written by Swarnalatha, P. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-03 with Computers categories.


Today’s business world is changing with the adoption of the internet of things (IoT). IoT is helping in prominently capturing a tremendous amount of data from multiple sources. Realizing the future and full potential of IoT devices will require an investment in new technologies. The Handbook of Research on Deep Learning Techniques for Cloud-Based Industrial IoT demonstrates how the computer scientists and engineers of today might employ artificial intelligence in practical applications with the emerging cloud and IoT technologies. The book also gathers recent research works in emerging artificial intelligence methods and applications for processing and storing the data generated from the cloud-based internet of things. Covering key topics such as data, cybersecurity, blockchain, and artificial intelligence, this premier reference source is ideal for industry professionals, engineers, computer scientists, researchers, scholars, academicians, practitioners, instructors, and students.



Test Yourself On Build A Large Language Model From Scratch


Test Yourself On Build A Large Language Model From Scratch
DOWNLOAD
Author :
language : en
Publisher: Simon and Schuster
Release Date : 2025-07-22

Test Yourself On Build A Large Language Model From Scratch written by and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-22 with Computers categories.


Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! Sebastian Raschka’s bestselling book Build a Large Language Model (From Scratch) is the best way to learn how Large Language Models function. It uses Python and the PyTorch deep learning library. It’s a unique way to learn this subject, which some believe is the only way to truly learn: you build a model yourself. Even with the clear explanations, diagrams, and code in the book, learning a complex subject is still hard. This Test Yourself guide intends to make it a little easier. The structure mirrors the structure of Build a Large Language Model (From Scratch), focusing on key concepts from each chapter. You can test yourself with multiple-choice quizzes, questions on code and key concepts, and questions with longer answers that push you to think critically. The answers to all questions are provided. Depending on what you know at any point, this Test Yourself guide can help you in different ways. It will solidify your knowledge if used after reading a chapter. But it will also benefit you if you digest it before reading. By testing yourself on the main concepts and their relationships you are primed to navigate a chapter more easily and be ready for its messages. We recommend using it before and after reading, as well as later when you have started forgetting. Repeated learning solidifies our knowledge and integrates it with related knowledge already in our long-term memory. What's inside • Questions on code and key concepts • Critical thinking exercises requiring longer answers • Answers for all questions About the reader For readers of Build a Large Language Model (From Scratch) who want to enhance their learning with exercises and self-assessment tools. About the author Curated from Build a Large Language Model (From Scratch)



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Mike Krebbs
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-01-02

Deep Learning With Python written by Mike Krebbs and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-02 with categories.


***** Buy now (Will soon return to $47.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning From Scratch by using Python and TensorFlow? The overall aim of this book is to give you an application of deep learning techniques with python. Deep Learning is a type of artificial intelligence and machine learning that has become extremely important in the past few years. Deep Learning allows us to teach machines how to complete complex tasks without explicitly programming them to do so. As a result people with the ability to teach machines using deep learning are in extremely high demand. It is also leading to them getting huge increases in salaries. Deep Learning is revolutionizing the world around us and hence the need to understand and learn it becomes significant. In this book we shall cover what is deep learning, how you can get started with deep learning and what deep learning can do for you. By the end of this book you should be able to know what is deep learning and the tools technology and trends driving the artificial intelligence revolution. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images, which detail all-important deep learning concepts and their applications. This Is a Practical Guide Book This book will help you explore exactly the most important deep learning techniques by using python and real data. It is a step-by-step book. You will build our Deep Learning Models by using Python Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and machine learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Great Book? Introduction Deep Learning Techniques Applications Next Steps Practical Sentiment Analysis using TensorFlow with Neural Networks Performing Sequence Classification with RNNs Implementing Sequence Classification Using RNNs in TensorFlow Glossary of Some Useful Terms in Deep Learning Sources & References Bonus Chapter: Anaconda Setup & Python Crash Course Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: f you want to smash Data Science from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and further learning will be required beyond this book to master all aspects of data science. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. I will also be happy to help you if you send us an email at [email protected].



Deep Learning For Dummies


Deep Learning For Dummies
DOWNLOAD
Author : John Paul Mueller
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-15

Deep Learning For Dummies written by John Paul Mueller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.


Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.



Inside The Learning Society


Inside The Learning Society
DOWNLOAD
Author : Stewart Ranson
language : en
Publisher: Burns & Oates
Release Date : 1998

Inside The Learning Society written by Stewart Ranson and has been published by Burns & Oates this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Education categories.


This text traces the history of the learning society and discusses the different interpretive models which have been attached to the idea. It provides scrutiny of the current debate, sharpening our understanding of the learning society at a time of some urgency.



Deep Learning With Jax


Deep Learning With Jax
DOWNLOAD
Author : Grigory Sapunov
language : en
Publisher: Simon and Schuster
Release Date : 2024-12-03

Deep Learning With Jax written by Grigory Sapunov and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-03 with Computers categories.


Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library. The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google’s Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations. In Deep Learning with JAX you will learn how to: • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax • Leverage libraries and modules from the JAX ecosystem Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX’s concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You’ll learn how to use JAX’s ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment. About the technology Google’s JAX offers a fresh vision for deep learning. This powerful library gives you fine control over low level processes like gradient calculations, delivering fast and efficient model training and inference, especially on large datasets. JAX has transformed how research scientists approach deep learning. Now boasting a robust ecosystem of tools and libraries, JAX makes evolutionary computations, federated learning, and other performance-sensitive tasks approachable for all types of applications. About the book Deep Learning with JAX teaches you to build effective neural networks with JAX. In this example-rich book, you’ll discover how JAX’s unique features help you tackle important deep learning performance challenges, like distributing computations across a cluster of TPUs. You’ll put the library into action as you create an image classification tool, an image filter application, and other realistic projects. The nicely-annotated code listings demonstrate how JAX’s functional programming mindset improves composability and parallelization. What's inside • Use JAX for numerical calculations • Build differentiable models with JAX primitives • Run distributed and parallelized computations with JAX • Use high-level neural network libraries such as Flax About the reader For intermediate Python programmers who are familiar with deep learning. About the author Grigory Sapunov holds a Ph.D. in artificial intelligence and is a Google Developer Expert in Machine Learning. The technical editor on this book was Nicholas McGreivy. Table of Contents Part 1 1 When and why to use JAX 2 Your first program in JAX Part 2 3 Working with arrays 4 Calculating gradients 5 Compiling your code 6 Vectorizing your code 7 Parallelizing your computations 8 Using tensor sharding 9 Random numbers in JAX 10 Working with pytrees Part 3 11 Higher-level neural network libraries 12 Other members of the JAX ecosystem A Installing JAX B Using Google Colab C Using Google Cloud TPUs D Experimental parallelization



Natural Language Processing In Action Second Edition


Natural Language Processing In Action Second Edition
DOWNLOAD
Author : Hobson Lane
language : en
Publisher: Simon and Schuster
Release Date : 2025-02-25

Natural Language Processing In Action Second Edition written by Hobson Lane and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-25 with Computers categories.


Develop your NLP skills from scratch, with an open source toolbox of Python packages, Transformers, Hugging Face, vector databases, and your own Large Language Models. Natural Language Processing in Action, Second Edition has helped thousands of data scientists build machines that understand human language. In this new and revised edition, you’ll discover state-of-the art Natural Language Processing (NLP) models like BERT and HuggingFace transformers, popular open-source frameworks for chatbots, and more. You’ll create NLP tools that can detect fake news, filter spam, deliver exceptional search results and even build truthfulness and reasoning into Large Language Models (LLMs). In Natural Language Processing in Action, Second Edition you will learn how to: • Process, analyze, understand, and generate natural language text • Build production-quality NLP pipelines with spaCy • Build neural networks for NLP using Pytorch • BERT and GPT transformers for English composition, writing code, and even organizing your thoughts • Create chatbots and other conversational AI agents In this new and revised edition, you’ll discover state-of-the art NLP models like BERT and HuggingFace transformers, popular open-source frameworks for chatbots, and more. Plus, you’ll discover vital skills and techniques for optimizing LLMs including conversational design, and automating the “trial and error” of LLM interactions for effective and accurate results. About the technology From nearly human chatbots to ultra-personalized business reports to AI-generated email, news stories, and novels, natural language processing (NLP) has never been more powerful! Groundbreaking advances in deep learning have made high-quality open source models and powerful NLP tools like spaCy and PyTorch widely available and ready for production applications. This book is your entrance ticket—and backstage pass—into the next generation of natural language processing. About the book Natural Language Processing in Action, Second Edition introduces the foundational technologies and state-of-the-art tools you’ll need to write and publish NLP applications. You learn how to create custom models for search, translation, writing assistants, and more, without relying on big commercial foundation models. This fully updated second edition includes coverage of BERT, Hugging Face transformers, fine-tuning large language models, and more. What's inside • NLP pipelines with spaCy • Neural networks with PyTorch • BERT and GPT transformers • Conversational design for chatbots About the reader For intermediate Python programmers familiar with deep learning basics. About the author Hobson Lane is a data scientist and machine learning engineer with over twenty years of experience building autonomous systems and NLP pipelines. Maria Dyshel is a social entrepreneur and artificial intelligence expert, and the CEO and cofounder of Tangible AI. Cole Howard and Hannes Max Hapke were co-authors of the first edition.



The School As A Learning Organisation


The School As A Learning Organisation
DOWNLOAD
Author : Kholeka Constance Moloi
language : en
Publisher:
Release Date : 2005

The School As A Learning Organisation written by Kholeka Constance Moloi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Education categories.