Hands On Natural Language Processing With Pytorch
DOWNLOAD
Download Hands On Natural Language Processing With Pytorch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Natural Language Processing With Pytorch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Natural Language Processing With Pytorch 1 X
DOWNLOAD
Author : Thomas Dop
language : en
Publisher:
Release Date : 2020-07-09
Hands On Natural Language Processing With Pytorch 1 X written by Thomas Dop and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-09 with Computers categories.
Developers working with NLP will be able to put their knowledge to work with this practical guide to PyTorch. You will learn to use PyTorch offerings and how to understand and analyze text using Python. You will learn to extract the underlying meaning in the text using deep neural networks and modern deep learning algorithms.
Natural Language Processing With Pytorch
DOWNLOAD
Author : Delip Rao
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-01-22
Natural Language Processing With Pytorch written by Delip Rao and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Computers categories.
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Applied Natural Language Processing With Pytorch 2 0
DOWNLOAD
Author : Dr. Deepti Chopra
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2025-01-27
Applied Natural Language Processing With Pytorch 2 0 written by Dr. Deepti Chopra and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-27 with Computers categories.
TAGLINE Unlock the Power of PyTorch 2.0 for Next-Level Natural Language Processing. KEY FEATURES ● Comprehensive coverage of NLP concepts, techniques, and best practices. ● Hands-on examples with code implementations using PyTorch 2.0. ● Focus on real-world applications and optimizing NLP models. ● Learn to develop advanced NLP solutions with dynamic GPU acceleration. DESCRIPTION Natural Language Processing (NLP) is revolutionizing industries, from chatbots to data insights. PyTorch 2.0 offers the tools to build powerful NLP models. Applied Natural Language Processing with PyTorch 2.0 provides a practical guide to mastering NLP with this advanced framework. This book starts with a strong foundation in NLP concepts and the essentials of PyTorch 2.0, ensuring that you are well-equipped to tackle advanced topics. It covers key techniques such as transformer models, pre-trained language models, sequence-to-sequence models, and more. Each chapter includes hands-on examples and code implementations for real-world application. With a focus on practical use cases, the book explores NLP tasks like sentiment analysis, text classification, named entity recognition, machine translation, and text generation. You'll learn how to preprocess text, design neural architectures, train models, and evaluate results. Whether you're a beginner or an experienced professional, this book will empower you to develop advanced NLP models and solutions. Get started today and unlock the potential of NLP with PyTorch 2.0! WHAT WILL YOU LEARN ● Master cutting-edge NLP techniques and integrate PyTorch 2.0 effectively. ● Implement NLP concepts with clear, hands-on examples using PyTorch 2.0. ● Tackle a wide range of NLP tasks, suitable for all experience levels. ● Explore tasks like sentiment analysis, text classification, and translation. ● Leverage advanced deep learning techniques for powerful NLP solutions. ● Preprocess text, design models, train, and evaluate their performance. WHO IS THIS BOOK FOR? This book is ideal for data scientists, machine learning engineers, and NLP practitioners, whether you're a beginner or an experienced professional. A basic understanding of Python and machine learning concepts is recommended, as the book focuses on practical applications, advanced techniques, and integrating PyTorch 2.0 for deep learning-powered NLP solutions. TABLE OF CONTENTS 1. Introduction to Natural Language Processing 2. Getting Started with PyTorch 3. Text Preprocessing 4. Building NLP Models with PyTorch 5. Advanced NLP Techniques with PyTorch 6. Model Training and Evaluation 7. Improving NLP Models with PyTorch 8. Deployment and Productionization 9. Case Studies and Practical Examples 10. Future Trends in Natural Language Processing and PyTorch Index
Hands On Natural Language Processing With Pytorch
DOWNLOAD
Author : Jibin Mathew
language : en
Publisher:
Release Date : 2019
Hands On Natural Language Processing With Pytorch written by Jibin Mathew and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
"The main goal of this course is to train you to perform complex NLP tasks (and build intelligent language applications) using Deep Learning with PyTorch. You will build two complete real-world NLP applications throughout the course. The first application is a Sentiment Analyzer that analyzes data to determine whether a review is positive or negative towards a particular movie. You will then create an advanced Neural Translation Machine that is a speech translation engine, using Sequence to Sequence models with the speed and flexibility of PyTorch to translate given text into different languages."--Resource description page.
Pytorch Deep Learning Hands On
DOWNLOAD
Author : Sherin Thomas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30
Pytorch Deep Learning Hands On written by Sherin Thomas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.
Hands On Neural Networks
DOWNLOAD
Author : Leonardo De Marchi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-30
Hands On Neural Networks written by Leonardo De Marchi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.
Design and create neural networks with deep learning and artificial intelligence principles using OpenAI Gym, TensorFlow, and Keras Key FeaturesExplore neural network architecture and understand how it functionsLearn algorithms to solve common problems using back propagation and perceptronsUnderstand how to apply neural networks to applications with the help of useful illustrationsBook Description Neural networks play a very important role in deep learning and artificial intelligence (AI), with applications in a wide variety of domains, right from medical diagnosis, to financial forecasting, and even machine diagnostics. Hands-On Neural Networks is designed to guide you through learning about neural networks in a practical way. The book will get you started by giving you a brief introduction to perceptron networks. You will then gain insights into machine learning and also understand what the future of AI could look like. Next, you will study how embeddings can be used to process textual data and the role of long short-term memory networks (LSTMs) in helping you solve common natural language processing (NLP) problems. The later chapters will demonstrate how you can implement advanced concepts including transfer learning, generative adversarial networks (GANs), autoencoders, and reinforcement learning. Finally, you can look forward to further content on the latest advancements in the field of neural networks. By the end of this book, you will have the skills you need to build, train, and optimize your own neural network model that can be used to provide predictable solutions. What you will learnLearn how to train a network by using backpropagationDiscover how to load and transform images for use in neural networksStudy how neural networks can be applied to a varied set of applicationsSolve common challenges faced in neural network developmentUnderstand the transfer learning concept to solve tasks using Keras and Visual Geometry Group (VGG) networkGet up to speed with advanced and complex deep learning concepts like LSTMs and NLP Explore innovative algorithms like GANs and deep reinforcement learningWho this book is for If you are interested in artificial intelligence and deep learning and want to further your skills, then this intermediate-level book is for you. Some knowledge of statistics will help you get the most out of this book.
Natural Language Processing Mit Pytorch
DOWNLOAD
Author : Delip Rao
language : de
Publisher:
Release Date : 2019
Natural Language Processing Mit Pytorch written by Delip Rao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Sprachanwendungen wie Amazon Alexa und Google Translate sind heute allgegenwärtig. Grundlage dafür ist das Natural Language Processing (NLP), das zahllose Möglichkeiten für die Entwicklung intelligenter, Deep-Learning-basierter Anwendungen eröffnet. In diesem Buch lernen Sie die neuesten Techniken zur Verarbeitung von Sprache kennen und nutzen dabei das neue, flexible Deep-Learning-Framework PyTorch. Die Autoren vermitteln Ihnen einen Überblick über NLP-Methoden und Grundkonzepte neuronaler Netze und demonstrieren Ihnen dann, wie Sie Sprachanwendungen mit PyTorch entwickeln. Sie erfahren z.B., wie Sie Einbettungen verwenden, um Wörter, Sätze und Dokumente darzustellen, wie sich Sequenzdaten mit RNNs modellieren und Sequenzvoraussagen und Sequenz-zu-Sequenz-Modelle generieren lassen, und Sie lernen Entwurfsmuster für den Aufbau von produktionsreifen NLP-Systemen kennen.
Deep Learning With Pytorch 1 X
DOWNLOAD
Author : Laura Mitchell
language : en
Publisher:
Release Date : 2019-11-29
Deep Learning With Pytorch 1 X written by Laura Mitchell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.
Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x Key Features Gain a thorough understanding of the PyTorch framework and learn to implement neural network architectures Understand GPU computing to perform heavy deep learning computations using Python Apply cutting-edge natural language processing (NLP) techniques to solve problems with textual data Book Description PyTorch is gaining the attention of deep learning researchers and data science professionals due to its accessibility and efficiency, along with the fact that it's more native to the Python way of development. This book will get you up and running with this cutting-edge deep learning library, effectively guiding you through implementing deep learning concepts. In this second edition, you'll learn the fundamental aspects that power modern deep learning, and explore the new features of the PyTorch 1.x library. You'll understand how to solve real-world problems using CNNs, RNNs, and LSTMs, along with discovering state-of-the-art modern deep learning architectures, such as ResNet, DenseNet, and Inception. You'll then focus on applying neural networks to domains such as computer vision and NLP. Later chapters will demonstrate how to build, train, and scale a model with PyTorch and also cover complex neural networks such as GANs and autoencoders for producing text and images. In addition to this, you'll explore GPU computing and how it can be used to perform heavy computations. Finally, you'll learn how to work with deep learning-based architectures for transfer learning and reinforcement learning problems. By the end of this book, you'll be able to confidently and easily implement deep learning applications in PyTorch. What you will learn Build text classification and language modeling systems using neural networks Implement transfer learning using advanced CNN architectures Use deep reinforcement learning techniques to solve optimization problems in PyTorch Mix multiple models for a powerful ensemble model Build image classifiers by implementing CNN architectures using PyTorch Get up to speed with reinforcement learning, GANs, LSTMs, and RNNs with real-world examples Who this book is for This book is for data scientists and machine learning engineers looking to work with deep learning algorithms using PyTorch 1.x. You will also find this book useful if you want to migrate to PyTorch 1.x. Working knowledge of Python programming and some understanding of machine learning will be helpful.
Transformers For Natural Language Processing
DOWNLOAD
Author : Denis Rothman
language : en
Publisher:
Release Date : 2021-01-28
Transformers For Natural Language Processing written by Denis Rothman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-28 with categories.
Become an AI language understanding expert by mastering the quantum leap of Transformer neural network models Key Features Build and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning models Go through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machine Learn training tips and alternative language understanding methods to illustrate important key concepts Book Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What You Will Learn Use the latest pretrained transformer models Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models Create language understanding Python programs using concepts that outperform classical deep learning models Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and more Measure productivity of key transformers to define their scope, potential, and limits, in production Who this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include deep learning & NLP practitioners, data analysts and data scientists who want an introduction to AI language understanding to process the increasing amounts of language-driven functions.
Deep Learning For Nlp And Speech Recognition
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2019-06-10
Deep Learning For Nlp And Speech Recognition written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-10 with Computers categories.
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.