Download Hands On Deep Learning With Tensorflow - eBooks (PDF)

Hands On Deep Learning With Tensorflow


Hands On Deep Learning With Tensorflow
DOWNLOAD

Download Hands On Deep Learning With Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Deep Learning With Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Deep Learning With Tensorflow


Hands On Deep Learning With Tensorflow
DOWNLOAD
Author : Salil Vishnu Kapur
language : en
Publisher:
Release Date : 2018

Hands On Deep Learning With Tensorflow written by Salil Vishnu Kapur and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


"Are you short on time to start from scratch to use deep learning to solve complex problems involving topics like neural networks and reinforcement learning? If yes, then this is the course to help you. This course is designed to help you to overcome various data science problems by using efficient deep learning models built in TensorFlow.The course begins with a quick introduction to TensorFlow essentials. Next, we start with deep neural networks for different problems and then explore the applications of Convolutional Neural Networks on two real datasets. If you're facing time series problem then we will show you how to tackle it using RNN. We will also highlight how autoencoders can be used for efficient data representation. Lastly, we will take you through some of the important techniques to implement generative adversarial networks. All these modules are developed with step by step TensorFlow implementation with the help of real examples.By the end of the course you will be able to develop deep learning based solutions to any kind of problem you have, without any need to learn deep learning models from scratch, rather using TensorFlow and it's enormous power."--Resource description page.



Hands On Deep Learning Architectures With Python


Hands On Deep Learning Architectures With Python
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30

Hands On Deep Learning Architectures With Python written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-05

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets



Hands On Deep Learning For Images With Tensorflow


Hands On Deep Learning For Images With Tensorflow
DOWNLOAD
Author : Will Ballard
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-31

Hands On Deep Learning For Images With Tensorflow written by Will Ballard and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.


Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow’s capabilities to perform efficient deep learning Book Description TensorFlow is Google’s popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow’s capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.



Hands On Computer Vision With Tensorflow 2


Hands On Computer Vision With Tensorflow 2
DOWNLOAD
Author : Benjamin Planche
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-30

Hands On Computer Vision With Tensorflow 2 written by Benjamin Planche and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.


A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.



Hands On Deep Learning Algorithms With Python


Hands On Deep Learning Algorithms With Python
DOWNLOAD
Author : Sudharsan Ravichandiran
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-07-25

Hands On Deep Learning Algorithms With Python written by Sudharsan Ravichandiran and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-25 with Computers categories.


Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.



Hands On Artificial Intelligence With Tensorflow


Hands On Artificial Intelligence With Tensorflow
DOWNLOAD
Author : Amir Ziai
language : en
Publisher:
Release Date : 2018-10-31

Hands On Artificial Intelligence With Tensorflow written by Amir Ziai and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Artificial intelligence categories.


Book Description Artificial Intelligence (AI) is a popular area with an emphasis on creating intelligent machines that can reason, evaluate, and understand the same way as humans. It is used extensively across many fields, such as image recognition, robotics, language processing, healthcare, finance, and more. Hands-On Artificial Intelligence with TensorFlow gives you a rundown of essential AI concepts and their implementation with TensorFlow, also highlighting different approaches to solving AI problems using machine learning and deep learning techniques. In addition to this, the book covers advanced concepts, such as reinforcement learning, generative adversarial networks (GANs), and multimodal learning. Once you have grasped all this, you'll move on to exploring GPU computing and neuromorphic computing, along with the latest trends in quantum computing. You'll work through case studies that will help you examine AI applications in the important areas of computer vision, healthcare, and FinTech, and analyze their datasets. In the concluding chapters, you'll briefly investigate possible developments in AI that we can expect to see in the future. By the end of this book, you will be well-versed with the essential concepts of AI and their implementation using TensorFlow. What you will learn Explore the core concepts of AI and its different approaches Use the TensorFlow framework for smart applications Implement various machine and deep learning algorithms with TensorFlow Design self-learning RL systems and implement generative models Perform GPU computing efficiently using best practices Build enterprise-grade apps for computer vision, NLP, and healthcare Who this book is for Hands-On Artificial Intelligence with TensorFlow is for you if you are a machine learning developer, data scientist, AI researcher, or anyone who wants to build artificial intelligence applications using TensorFlow. You need to have some working knowledge of machine learning to get the most out of this book.



Hands On Machine Learning With Scikit Learn And Tensorflow


Hands On Machine Learning With Scikit Learn And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-03-13

Hands On Machine Learning With Scikit Learn And Tensorflow written by Aurélien Géron and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-13 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--scikit-learn and TensorFlow--author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.



Hands On Transfer Learning With Python


Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.



Hands On Convolutional Neural Networks With Tensorflow


Hands On Convolutional Neural Networks With Tensorflow
DOWNLOAD
Author : Iffat Zafar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-28

Hands On Convolutional Neural Networks With Tensorflow written by Iffat Zafar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-28 with Computers categories.


Learn how to apply TensorFlow to a wide range of deep learning and Machine Learning problems with this practical guide on training CNNs for image classification, image recognition, object detection and many computer vision challenges. Key Features Learn the fundamentals of Convolutional Neural Networks Harness Python and Tensorflow to train CNNs Build scalable deep learning models that can process millions of items Book Description Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time! We start with an overview of popular machine learning and deep learning models, and then get you set up with a TensorFlow development environment. This environment is the basis for implementing and training deep learning models in later chapters. Then, you will use Convolutional Neural Networks to work on problems such as image classification, object detection, and semantic segmentation. After that, you will use transfer learning to see how these models can solve other deep learning problems. You will also get a taste of implementing generative models such as autoencoders and generative adversarial networks. Later on, you will see useful tips on machine learning best practices and troubleshooting. Finally, you will learn how to apply your models on large datasets of millions of images. What you will learn Train machine learning models with TensorFlow Create systems that can evolve and scale during their life cycle Use CNNs in image recognition and classification Use TensorFlow for building deep learning models Train popular deep learning models Fine-tune a neural network to improve the quality of results with transfer learning Build TensorFlow models that can scale to large datasets and systems Who this book is for This book is for Software Engineers, Data Scientists, or Machine Learning practitioners who want to use CNNs for solving real-world problems. Knowledge of basic machine learning concepts, linear algebra and Python will help.