Download Hadoop Spark - eBooks (PDF)

Hadoop Spark


Hadoop Spark
DOWNLOAD

Download Hadoop Spark PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hadoop Spark book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Spark The Definitive Guide


Spark The Definitive Guide
DOWNLOAD
Author : Bill Chambers
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-02-08

Spark The Definitive Guide written by Bill Chambers and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-08 with Computers categories.


Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation



Hands On Deep Learning With Apache Spark


Hands On Deep Learning With Apache Spark
DOWNLOAD
Author : Guglielmo Iozzia
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Hands On Deep Learning With Apache Spark written by Guglielmo Iozzia and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Speed up the design and implementation of deep learning solutions using Apache Spark Key FeaturesExplore the world of distributed deep learning with Apache SparkTrain neural networks with deep learning libraries such as BigDL and TensorFlowDevelop Spark deep learning applications to intelligently handle large and complex datasetsBook Description Deep learning is a subset of machine learning where datasets with several layers of complexity can be processed. Hands-On Deep Learning with Apache Spark addresses the sheer complexity of technical and analytical parts and the speed at which deep learning solutions can be implemented on Apache Spark. The book starts with the fundamentals of Apache Spark and deep learning. You will set up Spark for deep learning, learn principles of distributed modeling, and understand different types of neural nets. You will then implement deep learning models, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) on Spark. As you progress through the book, you will gain hands-on experience of what it takes to understand the complex datasets you are dealing with. During the course of this book, you will use popular deep learning frameworks, such as TensorFlow, Deeplearning4j, and Keras to train your distributed models. By the end of this book, you'll have gained experience with the implementation of your models on a variety of use cases. What you will learnUnderstand the basics of deep learningSet up Apache Spark for deep learningUnderstand the principles of distribution modeling and different types of neural networksObtain an understanding of deep learning algorithmsDiscover textual analysis and deep learning with SparkUse popular deep learning frameworks, such as Deeplearning4j, TensorFlow, and KerasExplore popular deep learning algorithms Who this book is for If you are a Scala developer, data scientist, or data analyst who wants to learn how to use Spark for implementing efficient deep learning models, Hands-On Deep Learning with Apache Spark is for you. Knowledge of the core machine learning concepts and some exposure to Spark will be helpful.



Expert Strategies In Apache Spark Comprehensive Data Processing And Advanced Analytics


Expert Strategies In Apache Spark Comprehensive Data Processing And Advanced Analytics
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-03

Expert Strategies In Apache Spark Comprehensive Data Processing And Advanced Analytics written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.


"Expert Strategies in Apache Spark: Comprehensive Data Processing and Advanced Analytics" is an essential guide for data professionals aiming to master Apache Spark's sophisticated capabilities. Building on foundational knowledge, this book delves into expert-level data processing and advanced analytics techniques. It provides detailed insights into Spark’s core components like RDDs, DataFrames, and Datasets, while also exploring cutting-edge features such as MLlib for machine learning and GraphX for graph processing. Through comprehensive and practical chapters, readers will learn to optimize Spark queries using Catalyst and Tungsten, efficiently handle streaming data, manage Spark clusters, and fine-tune performance for complex applications. Whether you're a data engineer looking to optimize Spark deployments or a data scientist aiming to enhance analytical models, this book delivers the expert strategies and best practices needed to tackle big data challenges and extract actionable insights at scale. Unlock your potential in the dynamic world of big data with "Expert Strategies in Apache Spark: Comprehensive Data Processing and Advanced Analytics". Harness the full potential of your data with Spark's advanced functionalities and transform your data operations into impactful intelligence.



Apache Spark 2 Data Processing And Real Time Analytics


Apache Spark 2 Data Processing And Real Time Analytics
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-21

Apache Spark 2 Data Processing And Real Time Analytics written by Romeo Kienzler and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-21 with Computers categories.


Build efficient data flow and machine learning programs with this flexible, multi-functional open-source cluster-computing framework Key FeaturesMaster the art of real-time big data processing and machine learning Explore a wide range of use-cases to analyze large data Discover ways to optimize your work by using many features of Spark 2.x and ScalaBook Description Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: Mastering Apache Spark 2.x by Romeo KienzlerScala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar AllaApache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbookWhat you will learnGet to grips with all the features of Apache Spark 2.xPerform highly optimized real-time big data processing Use ML and DL techniques with Spark MLlib and third-party toolsAnalyze structured and unstructured data using SparkSQL and GraphXUnderstand tuning, debugging, and monitoring of big data applications Build scalable and fault-tolerant streaming applications Develop scalable recommendation enginesWho this book is for If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.



Apache Spark Unleashed Advanced Techniques For Data Processing And Analysis


Apache Spark Unleashed Advanced Techniques For Data Processing And Analysis
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-14

Apache Spark Unleashed Advanced Techniques For Data Processing And Analysis written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-14 with Computers categories.


"Apache Spark Unleashed: Advanced Techniques for Data Processing and Analysis" delves into the sophisticated realm of Apache Spark, crafted for professionals eager to amplify their expertise in managing complex data processing challenges. This extensive guide traverses the Spark ecosystem, starting from essential components like RDDs and DataFrames, extending to cutting-edge subjects such as real-time data handling with Spark Structured Streaming and advanced predictive modeling with Spark MLlib. The book is meticulously organized to lead readers through Apache Spark’s architecture, setup and configuration, comprehensive data processing techniques, structured data querying, performance tuning, deployment strategies, and monitoring aspects. Each chapter is enriched with practical examples, insightful case studies, and industry best practices, ensuring that readers grasp both the theoretical foundations and their practical applications in real-world environments. Whether you are a software engineer, data scientist, data engineer, or analyst, "Apache Spark Unleashed: Advanced Techniques for Data Processing and Analysis" stands as a vital resource to effectively harness Apache Spark's capabilities, optimize your data processing operations, and realize scalable, high-performance data analytics solutions. This is your invitation to master Apache Spark and elevate your data processing proficiency to unparalleled heights.



Mastering Apache Spark 2 X


Mastering Apache Spark 2 X
DOWNLOAD
Author : Romeo Kienzler
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-26

Mastering Apache Spark 2 X written by Romeo Kienzler and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-26 with Computers categories.


Advanced analytics on your Big Data with latest Apache Spark 2.x About This Book An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities. Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark. Master the art of real-time processing with the help of Apache Spark 2.x Who This Book Is For If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected. What You Will Learn Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames Learn how specific parameter settings affect overall performance of an Apache Spark cluster Leverage Scala, R and python for your data science projects In Detail Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform. The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x. You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets. You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks. Style and approach This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Mastering Apache Spark


Mastering Apache Spark
DOWNLOAD
Author : Mike Frampton
language : en
Publisher:
Release Date : 2015

Mastering Apache Spark written by Mike Frampton and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.


Gain expertise in processing and storing data by using advanced techniques with Apache SparkAbout This Book- Explore the integration of Apache Spark with third party applications such as H20, Databricks and Titan- Evaluate how Cassandra and Hbase can be used for storage- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalitiesWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn- Extend the tools available for processing and storage- Examine clustering and classification using MLlib- Discover Spark stream processing via Flume, HDFS- Create a schema in Spark SQL, and learn how a Spark schema can be populated with data- Study Spark based graph processing using Spark GraphX- Combine Spark with H20 and deep learning and learn why it is useful- Evaluate how graph storage works with Apache Spark, Titan, HBase and Cassandra- Use Apache Spark in the cloud with Databricks and AWSIn DetailApache Spark is an in-memory cluster based parallel processing system that provides a wide range of functionality like graph processing, machine learning, stream processing and SQL. It operates at unprecedented speeds, is easy to use and offers a rich set of data transformations.This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand Spark functionality. The book commences with an overview of the Spark eco-system. You will learn how to use MLlib to create a fully working neural net for handwriting recognition. You will then discover how stream processing can be tuned for optimal performance and to ensure parallel processing. The book extends to show how to incorporate H20 for machine learning, Titan for graph based storage, Databricks for cloud-based Spark. Intermediate Scala based code examples are provided for Apache Spark module processing in a CentOS Linux and Databricks cloud environment.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



High Performance Spark


High Performance Spark
DOWNLOAD
Author : Holden Karau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25

High Performance Spark written by Holden Karau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.


Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues in Spark’s key/value pair paradigm Writing high-performance Spark code without Scala or the JVM How to test for functionality and performance when applying suggested improvements Using Spark MLlib and Spark ML machine learning libraries Spark’s Streaming components and external community packages



Apache Spark For Machine Learning


Apache Spark For Machine Learning
DOWNLOAD
Author : Deepak Gowda
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-11-01

Apache Spark For Machine Learning written by Deepak Gowda and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-01 with Computers categories.


Develop your data science skills with Apache Spark to solve real-world problems for Fortune 500 companies using scalable algorithms on large cloud computing clusters Key Features Apply techniques to analyze big data and uncover valuable insights for machine learning Learn to use cloud computing clusters for training machine learning models on large datasets Discover practical strategies to overcome challenges in model training, deployment, and optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the world of big data, efficiently processing and analyzing massive datasets for machine learning can be a daunting task. Written by Deepak Gowda, a data scientist with over a decade of experience and 30+ patents, this book provides a hands-on guide to mastering Spark’s capabilities for efficient data processing, model building, and optimization. With Deepak’s expertise across industries such as supply chain, cybersecurity, and data center infrastructure, he makes complex concepts easy to follow through detailed recipes. This book takes you through core machine learning concepts, highlighting the advantages of Spark for big data analytics. It covers practical data preprocessing techniques, including feature extraction and transformation, supervised learning methods with detailed chapters on regression and classification, and unsupervised learning through clustering and recommendation systems. You’ll also learn to identify frequent patterns in data and discover effective strategies to deploy and optimize your machine learning models. Each chapter features practical coding examples and real-world applications to equip you with the knowledge and skills needed to tackle complex machine learning tasks. By the end of this book, you’ll be ready to handle big data and create advanced machine learning models with Apache Spark.What you will learn Master Apache Spark for efficient, large-scale data processing and analysis Understand core machine learning concepts and their applications with Spark Implement data preprocessing techniques for feature extraction and transformation Explore supervised learning methods – regression and classification algorithms Apply unsupervised learning for clustering tasks and recommendation systems Discover frequent pattern mining techniques to uncover data trends Who this book is for This book is ideal for data scientists, ML engineers, data engineers, students, and researchers who want to deepen their knowledge of Apache Spark’s tools and algorithms. It’s a must-have for those struggling to scale models for real-world problems and a valuable resource for preparing for interviews at Fortune 500 companies, focusing on large dataset analysis, model training, and deployment.



Big Data Analysis New Algorithms For A New Society


Big Data Analysis New Algorithms For A New Society
DOWNLOAD
Author : Nathalie Japkowicz
language : en
Publisher: Springer
Release Date : 2015-12-16

Big Data Analysis New Algorithms For A New Society written by Nathalie Japkowicz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-16 with Technology & Engineering categories.


This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges.