Generative Deep Learning
DOWNLOAD
Download Generative Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generative Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: O'Reilly Media
Release Date : 2019-06-28
Generative Deep Learning written by David Foster and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Computers categories.
Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-06-28
Generative Deep Learning written by David Foster and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-28 with Computers categories.
Generative AI is the hottest topic in tech. This practical book teaches machine learning engineers and data scientists how to use TensorFlow and Keras to create impressive generative deep learning models from scratch, including variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, normalizing flows, energy-based models, and denoising diffusion models. The book starts with the basics of deep learning and progresses to cutting-edge architectures. Through tips and tricks, you'll understand how to make your models learn more efficiently and become more creative. Discover how VAEs can change facial expressions in photos Train GANs to generate images based on your own dataset Build diffusion models to produce new varieties of flowers Train your own GPT for text generation Learn how large language models like ChatGPT are trained Explore state-of-the-art architectures such as StyleGAN2 and ViT-VQGAN Compose polyphonic music using Transformers and MuseGAN Understand how generative world models can solve reinforcement learning tasks Dive into multimodal models such as DALL.E 2, Imagen, and Stable Diffusion This book also explores the future of generative AI and how individuals and companies can proactively begin to leverage this remarkable new technology to create competitive advantage.
Generative Deep Learning With Python
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-12
Generative Deep Learning With Python written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-12 with Computers categories.
Dive into the world of Generative Deep Learning with Python, mastering GANs, VAEs, & autoregressive models through projects & advanced topics. Gain practical skills & theoretical knowledge to create groundbreaking AI applications. Key Features Comprehensive coverage of deep learning and generative models. In-depth exploration of GANs, VAEs, & autoregressive models & advanced topics in generative AI. Practical coding exercises & interactive assignments to build your own generative models. Book DescriptionGenerative Deep Learning with Python opens the door to the fascinating world of AI where machines create. This course begins with an introduction to deep learning, establishing the essential concepts and techniques. You will then delve into generative models, exploring their theoretical foundations and practical applications. As you progress, you will gain a deep understanding of Generative Adversarial Networks (GANs), learning how they function and how to implement them for tasks like face generation. The course's hands-on projects, such as creating GANs for face generation and using Variational Autoencoders (VAEs) for handwritten digit generation, provide practical experience that reinforces your learning. You'll also explore autoregressive models for text generation, allowing you to see the versatility of generative models across different types of data. Advanced topics will prepare you for cutting-edge developments in the field. Throughout your journey, you will gain insights into the future landscape of generative deep learning, equipping you with the skills to innovate and lead in this rapidly evolving field. By the end of the course, you will have a solid foundation in generative deep learning and be ready to apply these techniques to real-world challenges, driving advancements in AI and machine learning.What you will learn Develop a detailed understanding of deep learning fundamentals Implement and train Generative Adversarial Networks (GANs) Create & utilize Variational Autoencoders for data generation Apply autoregressive models for text generation Explore advanced topics & stay ahead in the field of generative AI Analyze and optimize the performance of generative models Who this book is for This course is designed for technical professionals, data scientists, and AI enthusiasts who have a foundational understanding of deep learning and Python programming. It is ideal for those looking to deepen their expertise in generative models and apply these techniques to innovative projects. Prior experience with neural networks and machine learning concepts is recommended to maximize the learning experience. Additionally, research professionals and advanced practitioners in AI seeking to explore generative deep learning applications will find this course highly beneficial.
Generative Deep Learning
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Independently Published
Release Date : 2024-06-17
Generative Deep Learning written by Anand Vemula and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-17 with Computers categories.
Generative Deep Learning: Advanced Techniques and Applications is a comprehensive guide that delves into the cutting-edge world of generative models in deep learning. This book offers an in-depth exploration of various generative techniques, providing readers with a solid foundation in both theory and practice. From the basics of neural networks to the complexities of autoregressive models and energy-based models, this book covers a wide range of topics essential for understanding and building generative models. The book begins with an introduction to generative deep learning, explaining what it is, its applications, and its impact on various industries. It then delves into foundational concepts, including neural networks, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and autoencoders. Readers will gain insights into the differences between generative and discriminative models and learn about key generative models like Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). Each chapter includes practical examples, use cases, case studies, and hands-on exercises, making it easier for readers to apply what they've learned. Detailed tutorials and code implementations in TensorFlow and PyTorch guide readers through the process of building and training generative models. Topics such as conditional generative models, semi-supervised learning, and self-supervised learning are explored, highlighting their significance in improving model performance with limited labeled data. The book also covers generative modeling with text, images, and audio, showcasing applications like text generation, style transfer, and music synthesis. Readers will learn about advanced topics such as normalizing flows and energy-based models, providing a comprehensive understanding of the latest advancements in the field. Finally, the book addresses ethical considerations and future research directions, emphasizing the importance of responsible AI development. With detailed case studies and real-world applications, readers will gain practical insights and lessons learned from successful implementations of generative models. Generative Deep Learning: Advanced Techniques and Applications is an essential resource for AI practitioners, researchers, and enthusiasts looking to deepen their knowledge and skills in generative modeling.
Generative Deep Learning With Python
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher:
Release Date : 2023
Generative Deep Learning With Python written by Cuantum Technologies LLC and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Artificial intelligence categories.
Welcome to a journey where artificial intelligence meets creativity, where deep learning algorithms dream, and where you are the architect of these dreams. Introducing Generative Deep Learning with Python: Unleashing the Creative Power of AI - your comprehensive guide to the enchanting world of generative models. Have you ever been mesmerized by AI-created artwork, deep fake videos, or the uncanny ability of platforms like Spotify to match your music taste? At the heart of these technologies lie Generative Models, a cutting-edge AI application that's revolutionizing industries. This book is a comprehensive guide that explores this revolutionary domain. It promises to take you on a journey that cuts through the complexity and illuminates the principles that power generative models. It's a ticket to a world where art meets science, creativity aligns with technology, and AI dreams become a reality. This book is more than a guide; it's a thrilling adventure into this realm. Our journey starts with the fundamentals, demystifying concepts like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Autoregressive models. This is a ticket for everyone, whether you're a seasoned AI practitioner or an enthusiastic beginner. Interest deepened? Get your hands on the three exciting projects that form the bedrock of our book: Face Generation with GANs, Handwritten Digit Generation with VAEs, and Text Generation with Autoregressive Models. These practical projects give you the opportunity to apply your knowledge and gain insights into the process of building and training generative models. The desire for more? Delve into advanced topics, exploring challenges, solutions, and prospects. From understanding and tackling the notorious problem of Mode Collapse to incorporating domain knowledge into your generative models, the book covers it all.
Gans In Action
DOWNLOAD
Author : Vladimir Bok
language : en
Publisher: Simon and Schuster
Release Date : 2019-09-09
Gans In Action written by Vladimir Bok and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Generative Adversarial Networks Projects
DOWNLOAD
Author : Kailash Ahirwar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Generative Adversarial Networks Projects written by Kailash Ahirwar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Mathematics categories.
Explore various Generative Adversarial Network architectures using the Python ecosystem Key FeaturesUse different datasets to build advanced projects in the Generative Adversarial Network domainImplement projects ranging from generating 3D shapes to a face aging applicationExplore the power of GANs to contribute in open source research and projectsBook Description Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learnTrain a network on the 3D ShapeNet dataset to generate realistic shapesGenerate anime characters using the Keras implementation of DCGANImplement an SRGAN network to generate high-resolution imagesTrain Age-cGAN on Wiki-Cropped images to improve face verificationUse Conditional GANs for image-to-image translationUnderstand the generator and discriminator implementations of StackGAN in KerasWho this book is for If you’re a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.
Generative Adversarial Networks With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-07-11
Generative Adversarial Networks With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-11 with Computers categories.
Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.
Generative Ai And Deep Learning
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Independently Published
Release Date : 2024-05-30
Generative Ai And Deep Learning written by Anand Vemula and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-30 with Computers categories.
"Generative AI and Deep Learning: From Fundamentals to Advanced Applications" is a comprehensive guide that explores the exciting field of artificial intelligence (AI) and deep learning. Written for both beginners and seasoned professionals, this book delves into the foundational concepts of generative AI and deep learning architectures, including neural networks basics, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. The book starts with an overview of generative models, explaining their significance in generating new data samples and their various applications across industries. It covers popular generative models like autoencoders, restricted Boltzmann machines (RBMs), and deep belief networks (DBNs), providing insights into their workings and real-world use cases. Moving beyond the basics, the book explores advanced topics in generative AI, such as reinforcement learning integration and its applications in natural language processing (NLP). Readers will learn about cutting-edge techniques like transformer models, including BERT and GPT, and how they revolutionize language understanding and generation tasks. Throughout the book, ethical considerations and challenges in generative AI are highlighted, emphasizing the importance of fairness, transparency, and security in AI development. Real-world case studies showcase successful implementations of generative AI across diverse domains, from healthcare and finance to art and entertainment. Practical guidance is provided on building and deploying generative models, including model training, evaluation, and optimization strategies. The book also explores popular tools and frameworks like TensorFlow, PyTorch, and OpenAI GPT, empowering readers to harness the full potential of generative AI technology. With insights into emerging trends and future directions, "Generative AI and Deep Learning" offers a holistic view of the field, inspiring readers to explore new possibilities and contribute to the advancement of AI for the betterment of society. Whether you're a student, researcher, or industry professional, this book is your essential companion on the journey through the exciting world of generative AI and deep learning. Keywords: Generative AI, Deep Learning, Neural Networks, Autoencoders, Reinforcement Learning, Natural Language Processing, Ethics, Case Studies, Tools and Frameworks, Future Directions.
Generative Adversarial Networks And Deep Learning
DOWNLOAD
Author : Roshani Raut
language : en
Publisher: CRC Press
Release Date : 2023-04-10
Generative Adversarial Networks And Deep Learning written by Roshani Raut and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-10 with Computers categories.
This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio. A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc. Features: Presents a comprehensive guide on how to use GAN for images and videos. Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN Highlights the inclusion of gaming effects using deep learning methods Examines the significant technological advancements in GAN and its real-world application. Discusses as GAN challenges and optimal solutions The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning. The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum