F For Machine Learning Essentials
DOWNLOAD
Download F For Machine Learning Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get F For Machine Learning Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
F For Machine Learning Essentials
DOWNLOAD
Author : Sudipta Mukherjee
language : en
Publisher: Packt Publishing
Release Date : 2016-02-25
F For Machine Learning Essentials written by Sudipta Mukherjee and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-25 with Computers categories.
Get up and running with machine learning with F# in a fun and functional wayAbout This Book- Design algorithms in F# to tackle complex computing problems- Be a proficient F# data scientist using this simple-to-follow guide- Solve real-world, data-related problems with robust statistical models, built for a range of datasetsWho This Book Is ForIf you are a C# or an F# developer who now wants to explore the area of machine learning, then this book is for you. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.What You Will Learn- Use F# to find patterns through raw data- Build a set of classification systems using Accord.NET, Weka, and F#- Run machine learning jobs on the Cloud with MBrace- Perform mathematical operations on matrices and vectors using Math.NET- Use a recommender system for your own problem domain- Identify tourist spots across the globe using inputs from the user with decision tree algorithmsIn DetailThe F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs.If you want to learn how to use F# to build machine learning systems, then this is the book you want.Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.Style and approachThis book is a fast-paced tutorial guide that uses hands-on examples to explain real-world applications of machine learning. Using practical examples, the book will explore several machine learning techniques and also describe how you can use F# to build machine learning systems.
R Deep Learning Essentials
DOWNLOAD
Author : Mark Hodnett
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-24
R Deep Learning Essentials written by Mark Hodnett and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-24 with Computers categories.
Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.
Machine Learning Essentials
DOWNLOAD
Author : Alboukadel Kassambara
language : en
Publisher: STHDA
Release Date : 2018-03-10
Machine Learning Essentials written by Alboukadel Kassambara and has been published by STHDA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-10 with Computers categories.
Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.
Machine Learning Essentials You Always Wanted To Know
DOWNLOAD
Author : Dhairya Parikh
language : en
Publisher: Vibrant Publishers
Release Date : 2025-07-04
Machine Learning Essentials You Always Wanted To Know written by Dhairya Parikh and has been published by Vibrant Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-04 with Business & Economics categories.
· Covers key algorithms and techniques · Ideal for students and professionals · Hands-on implementation included Master the fundamentals of ML and take the first step towards a career in AI! In today’s rapidly evolving world, machine learning (ML) is no longer just for researchers or data scientists. From personalized recommendations on streaming platforms to fraud detection in banking, ML powers many aspects of our daily lives. As industries increasingly adopt AI-driven solutions, learning machine learning has become a valuable skill. Yet, many find the subject overwhelming, often intimidated by its mathematical complexity. That’s where Machine Learning Essentials You Always Wanted to Know (Machine Learning Essentials) comes in. This beginner-friendly guide offers a structured, step-by-step approach to understanding machine learning concepts without unnecessary jargon. Whether you are a student, a professional looking to transition into AI, or simply curious about how machines learn, this book provides a clear and practical roadmap to mastering ML. Authored by Dhairya Parikh, an experienced data engineer who returned to academia to refine his expertise, this book bridges the gap between theory and real-world application. It simplifies the core concepts of ML, breaking them down into digestible explanations paired with hands-on coding exercises to help you apply what you learn. What You’ll Learn: · The fundamentals of machine learning and how it powers modern technology · The three key types of ML—Supervised, Unsupervised, and Reinforcement Learning · How to combine algorithms, data, and models to develop AI-driven solutions · Practical coding techniques to build and implement machine learning models Part of Vibrant Publishers’ Self-Learning Management Series, this book serves as a valuable guide for building machine learning skills, enhancing your expertise, and advancing your career in AI and data science.
R Deep Learning Essentials
DOWNLOAD
Author : Joshua F. Wiley
language : en
Publisher:
Release Date : 2016-03-29
R Deep Learning Essentials written by Joshua F. Wiley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-29 with Computers categories.
Build automatic classification and prediction models using unsupervised learningAbout This Book- Harness the ability to build algorithms for unsupervised data using deep learning concepts with R- Master the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the models- Build models relating to neural networks, prediction and deep predictionWho This Book Is ForThis book caters to aspiring data scientists who are well versed with machine learning concepts with R and are looking to explore the deep learning paradigm using the packages available in R. You should have a fundamental understanding of the R language and be comfortable with statistical algorithms and machine learning techniques, but you do not need to be well versed with deep learning concepts.What You Will Learn- Set up the R package H2O to train deep learning models- Understand the core concepts behind deep learning models- Use Autoencoders to identify anomalous data or outliers- Predict or classify data automatically using deep neural networks- Build generalizable models using regularization to avoid overfitting the training dataIn DetailDeep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning.This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.Style and approachThis book takes a practical approach to showing you the concepts of deep learning with the R programming language. We will start with setting up important deep learning packages available in R and then move towards building models related to neural network, prediction, and deep prediction - and all of this with the help of real-life examples.
Machine Learning Essentials And Applications
DOWNLOAD
Author : Mrs. N. Jayasri
language : en
Publisher: RK Publication
Release Date : 2024-07-27
Machine Learning Essentials And Applications written by Mrs. N. Jayasri and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-27 with Computers categories.
Machine Learning Essentials and Applications a comprehensive of machine learning's core principles, methodologies, and real-world applications. This book is designed for both beginners and professionals, covering essential topics like supervised and unsupervised learning, neural networks, and deep learning. With clear explanations and practical examples, it connects theory to practice, showcasing machine learning’s impact across industries such as healthcare, finance, and technology. Ideal for readers seeking foundational knowledge and insights into the transformative potential of machine learning in various fields.
Machine Learning
DOWNLOAD
Author : Claude Sammut
language : en
Publisher: Morgan Kaufmann
Release Date : 2002
Machine Learning written by Claude Sammut and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Artificial intelligence categories.
English Alive
DOWNLOAD
Author : Jan Cousens
language : en
Publisher: Jacaranda
Release Date : 2006
English Alive written by Jan Cousens and has been published by Jacaranda this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with English language categories.
English Alive 3 is the centrepiece of a groundbreaking program for English in the Middle Years. The program focuses strongly on reading and writing and on associated thinking skills and strategies. Beginning with the premise that Middle Years students need to be engaged and stimulated before they can learn effectively the program recognises that students learn in different ways and draw on multiple intelligences. English Alive 3 is designed to encourage deep learning: students investigate a knowledge area in many layers, so that they build deep understanding and develop a range of skills. Reading and writing are taught through a thematic workshop approach, using high-interest texts and activities that really teach students the how of literary, everyday and visual texts. The Jacaranda fiction series is also part of the program. This provides both motivated and reluctant readers with stimulating fiction - some with SOSE/Humanities/HSIE links. The titles the the series are suitable as set texts or for literature circles and wide reading programs.
Machine Learning Essentials A Practical Guide To Building Accurate And Reliable Models
DOWNLOAD
Author : Devansh Dhiman
language : en
Publisher: Devansh Dhiman
Release Date : 2023-05-01
Machine Learning Essentials A Practical Guide To Building Accurate And Reliable Models written by Devansh Dhiman and has been published by Devansh Dhiman this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-01 with Business & Economics categories.
Machine learning is a powerful tool for making accurate predictions and improving decision-making based on data-driven insights. However, building accurate and reliable machine learning models requires a thorough understanding of the machine learning workflow, from data preprocessing and exploration to model training and deployment. In this ebook, we provide a practical guide to machine learning essentials, covering everything from the basics of supervised and unsupervised learning to deep learning and model deployment. We explore common machine learning algorithms, including decision trees, support vector machines, and neural networks, and provide examples of how they can be used in real-world applications. We also delve into data preprocessing and exploration, discussing techniques for cleaning, transforming, and scaling data to make it suitable for analysis, and exploring ways to gain insights into the properties and relationships of the data. We discuss best practices for model training and evaluation, and explore strategies for deploying and maintaining machine learning models in a production environment. Whether you're an experienced data scientist or just starting out, this ebook provides a comprehensive guide to building accurate and reliable machine learning models that can transform your business and improve decision-making based on data-driven insights.
Neural Network Fundamentals With Graphs Algorithms And Applications
DOWNLOAD
Author : Nirmal K. Bose
language : en
Publisher: McGraw-Hill Companies
Release Date : 1996
Neural Network Fundamentals With Graphs Algorithms And Applications written by Nirmal K. Bose and has been published by McGraw-Hill Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.