Download Explainable Artificial Intelligence A Practical Guide - eBooks (PDF)

Explainable Artificial Intelligence A Practical Guide


Explainable Artificial Intelligence A Practical Guide
DOWNLOAD

Download Explainable Artificial Intelligence A Practical Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explainable Artificial Intelligence A Practical Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Explainable Artificial Intelligence A Practical Guide


Explainable Artificial Intelligence A Practical Guide
DOWNLOAD
Author : Parikshit Narendra Mahalle
language : en
Publisher: CRC Press
Release Date : 2024-12-02

Explainable Artificial Intelligence A Practical Guide written by Parikshit Narendra Mahalle and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-02 with Computers categories.


This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. It evaluates and justifies AI applications while enhancing trust in AI outcomes and aiding comprehension of AI feature development. Key topics include an overview of explainable AI, black box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI. Technical topics discussed in the book include: Explainable AI overview Understanding black box models Techniques for model interpretability Practical applications of XAI Future trends and challenges in XAI



Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning


Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer
Release Date : 2021-12-16

Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning written by Uday Kamath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-16 with Computers categories.


This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group



Applied Machine Learning Explainability Techniques


Applied Machine Learning Explainability Techniques
DOWNLOAD
Author : Aditya Bhattacharya
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-07-29

Applied Machine Learning Explainability Techniques written by Aditya Bhattacharya and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-29 with Computers categories.


Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems Key Features • Explore various explainability methods for designing robust and scalable explainable ML systems • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems • Design user-centric explainable ML systems using guidelines provided for industrial applications Book Description Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases. Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users. By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered. What you will learn • Explore various explanation methods and their evaluation criteria • Learn model explanation methods for structured and unstructured data • Apply data-centric XAI for practical problem-solving • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others • Discover industrial best practices for explainable ML systems • Use user-centric XAI to bring AI closer to non-technical end users • Address open challenges in XAI using the recommended guidelines Who this book is for This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.



Explainable Ai For Practitioners


Explainable Ai For Practitioners
DOWNLOAD
Author : Michael Munn
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-10-31

Explainable Ai For Practitioners written by Michael Munn and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-31 with Computers categories.


Most intermediate-level machine learning books focus on how to optimize models by increasing accuracy or decreasing prediction error. But this approach often overlooks the importance of understanding why and how your ML model makes the predictions that it does. Explainability methods provide an essential toolkit for better understanding model behavior, and this practical guide brings together best-in-class techniques for model explainability. Experienced machine learning engineers and data scientists will learn hands-on how these techniques work so that you'll be able to apply these tools more easily in your daily workflow. This essential book provides: A detailed look at some of the most useful and commonly used explainability techniques, highlighting pros and cons to help you choose the best tool for your needs Tips and best practices for implementing these techniques A guide to interacting with explainability and how to avoid common pitfalls The knowledge you need to incorporate explainability in your ML workflow to help build more robust ML systems Advice about explainable AI techniques, including how to apply techniques to models that consume tabular, image, or text data Example implementation code in Python using well-known explainability libraries for models built in Keras and TensorFlow 2.0, PyTorch, and HuggingFace



Explainable Ai With Python


Explainable Ai With Python
DOWNLOAD
Author : Leonida Gianfagna
language : en
Publisher: Springer Nature
Release Date : 2021-04-28

Explainable Ai With Python written by Leonida Gianfagna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-28 with Computers categories.


This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.



Introduction To Explainable Ai Xai


Introduction To Explainable Ai Xai
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-27

Introduction To Explainable Ai Xai written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-27 with Computers categories.


"Introduction to Explainable AI (XAI): Making AI Understandable" is an essential resource for anyone seeking to understand the burgeoning field of explainable artificial intelligence. As AI systems become integral to critical decision-making processes across industries, the ability to interpret and comprehend their outputs becomes increasingly vital. This book offers a comprehensive exploration of XAI, delving into its foundational concepts, diverse techniques, and pivotal applications. It strives to demystify complex AI behaviors, ensuring that stakeholders across sectors can engage with AI technologies confidently and responsibly. Structured to cater to both beginners and those with an existing interest in AI, this book covers the spectrum of XAI topics, from model-specific approaches and interpretable machine learning to the ethical and societal implications of AI transparency. Readers will be equipped with practical insights into the tools and frameworks available for developing explainable models, alongside an understanding of the challenges and limitations inherent in the field. As we look toward the future, the book also addresses emerging trends and research directions, positioning itself as a definitive guide to navigating the evolving landscape of XAI. This book stands as an invaluable reference for students, practitioners, and policy makers alike, offering a balanced blend of theory and practical guidance. By focusing on the synergy between humans and machines through explainability, it underscores the importance of building AI systems that are not only powerful but also trustworthy and aligned with societal values.



Current Developments In Knowledge Acquisition


Current Developments In Knowledge Acquisition
DOWNLOAD
Author : Thomas Wetter
language : en
Publisher: Springer
Release Date : 1992

Current Developments In Knowledge Acquisition written by Thomas Wetter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Computers categories.


"Methodological knowledge acquisition and knowledge engineering have achievedincreasing attention in recent years due both to active research projects and to successful practical applications. Both aspects have over the years been reflected in the structure of the European Knowledge Acquisition Workshops (EKAW), where a users' forum has always been combined with a scientific workshop. This volume contains the proceedings of EKAW-92. The papers are organized into five thematic sectionson: - Technology transfer - General modelling approaches - Knowledgeformalization and automated methods - Elicitation and diagnosis of human knowledge - Practice and experiences of knowledge acquisition. A total of 65 persons from around the world served as the program committee. Their recommendations and sometimes very detailed comments helped both workshop organizers and individual authors to achieve the high quality reflected in this volume."--PUBLISHER'S WEBSITE.



Artificial Intelligence Abstracts


Artificial Intelligence Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1986

Artificial Intelligence Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with Artificial intelligence categories.




Understanding Artificial Intelligence


Understanding Artificial Intelligence
DOWNLOAD
Author : Aamir Malik
language : en
Publisher: Independently Published
Release Date : 2025-10-07

Understanding Artificial Intelligence written by Aamir Malik and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-07 with categories.




Proceedings Of The Iasted International Conference Artificial Intelligence And Soft Computing May 27 30 1998 Cancun Mexico


Proceedings Of The Iasted International Conference Artificial Intelligence And Soft Computing May 27 30 1998 Cancun Mexico
DOWNLOAD
Author : International Association of Science and Technology for Development
language : en
Publisher: Anaheim, [Calif.] ; Calgary : IASTED/ACTA Press
Release Date : 1998

Proceedings Of The Iasted International Conference Artificial Intelligence And Soft Computing May 27 30 1998 Cancun Mexico written by International Association of Science and Technology for Development and has been published by Anaheim, [Calif.] ; Calgary : IASTED/ACTA Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.