Download Electromagnetics Problem Solver - eBooks (PDF)

Electromagnetics Problem Solver


Electromagnetics Problem Solver
DOWNLOAD

Download Electromagnetics Problem Solver PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electromagnetics Problem Solver book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Electromagnetics Problem Solver


Electromagnetics Problem Solver
DOWNLOAD
Author :
language : en
Publisher: Research & Education Assoc.
Release Date :

Electromagnetics Problem Solver written by and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Science categories.


Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of electromagnetics currently available, with hundreds of electromagnetics problems that cover everything from dielectrics and magnetic fields to plane waves and transmission lines. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction SECTION I Chapter 1: Vector Analysis Scalars and Vectors Gradient, Divergence, and Curl Line, Surface, and Volume Integrals Stoke's Theorem Chapter 2: Electric Charges Charge Densities and Distributions Coulomb's Law Electric Field Chapter 3: Electric Field Intensity Electric Flux Gauss's Law Charges Chapter 4: Potential Work Potential Potential and Gradient Motion in Electric Field Energy Chapter 5: Dielectrics Current Density Resistance Polarization Boundary Conditions Dielectrics Chapter 6: Capacitance Capacitance Parallel Plate Capacitors Coaxial and Concentric Capacitors Multiple Dielectric Capacitors, Series and Parallel Combinations Potential Stored Energy and Force in Capacitors Chapter 7: Poisson's and Laplace Equations Laplace's Equation Poisson's Equation Iteration Method Images Chapter 8: Steady Magnetic Fields Biot-Savart's Law Ampere's Law Magnetic Flux and Flux Density Vector Magnetic Potential H-Field Chapter 9: Forces in Steady Magnetic Fields Forces on Moving Charges Forces on Differential Current Elements Forces on Conductors Carrying Currents Magnetization Magnetic Boundary Conditions Potential Energy of Magnetic Fields Chapter 10: Magnetic Circuits Reluctance and Permeance Determination of Ampere-Turns Flux Produced by a Given mmf Self and Mutual Inductance Force and Torque in Magnetic Circuits Chapter 11: Time - Varying Fields and Maxwell's Equations Faraday's Law Maxwell's Equations Displacement Current Generators Chapter 12: Plane Waves Energy and the Poynting Vector Normal Incidence Boundary Conditions Plane Waves in Conducting Dielectric Media Plane Waves in Free Space Plane Waves and Current Density Chapter 13: Transmission Lines Equations of Transmission Lines Input Impedances Smith Chart Matching Reflection Coefficient Chapter 14: Wave Guides and Antennas Cutoff Frequencies for TE and TM Modes Propagation and Attenuation Constants Field Components in Wave-Guides Absorbed and Transmitted Power Characteristics of Antennas Radiated and Absorbed Power of Antennas SECTION II - Summary of Electromagnetic Propagation in Conducting Media II-1 Basic Equations and Theorems Maxwell's Equation Auxiliary Potentials Harmonic Time Variation Particular Solutions for an Unbounded Homogenous Region with Sources Poynting Vector Reciprocity Theorem Boundary Conditions Uniqueness Theorems TM and TE Field Analysis II-2 Plane Waves Uniform Plane Waves Nonuniform Plane Waves Reflection and Refraction at a Plane Surface Refraction in a Conducting Medium Surface Waves Plane Waves in Layered Media Impedance Boundary Conditions Propogation into a conductor with a Rough Surface II-3 Electromagnetic Field of Dipole Sources Infinite Homogenous Conducting Medium Semi-Infinite Homogenous Conducting Medium Static Electric Dipole Harmonic Dipole Sources Far Field Near Field Quasi-Static Field Layered Conducting Half Space II-4 Electromagnetic Field of Long Line Sources and Finite Length Electric Antennas Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Semi-Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Layered Conducting Half Space Long Line Source Finite Length Electric Antenna Appendix Parameters of Conducting Media Dipole Approximation Scattering Antenna Impedance ELF and VLF Atmospheric Noise Index WHAT THIS BOOK IS FOR Students have generally found electromagnetics a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of electromagnetics continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of electromagnetics terms also contribute to the difficulties of mastering the subject. In a study of electromagnetics, REA found the following basic reasons underlying the inherent difficulties of electromagnetics: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem which leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an electromagnetics professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing electromagnetics processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to electromagnetics than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in electromagnetics overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers electromagnetics a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.



Electromagnetics


Electromagnetics
DOWNLOAD
Author : Editors of Rea
language : en
Publisher:
Release Date : 1984-01-17

Electromagnetics written by Editors of Rea and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984-01-17 with categories.


Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of electromagnetics currently available, with hundreds of electromagnetics problems that cover everything from dielectrics and magnetic fields to plane waves and transmission lines. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction SECTION I Chapter 1: Vector Analysis Scalars and Vectors Gradient, Divergence, and Curl Line, Surface, and Volume Integrals Stoke's Theorem Chapter 2: Electric Charges Charge Densities and Distributions Coulomb's Law Electric Field Chapter 3: Electric Field Intensity Electric Flux Gauss's Law Charges Chapter 4: Potential Work Potential Potential and Gradient Motion in Electric Field Energy Chapter 5: Dielectrics Current Density Resistance Polarization Boundary Conditions Dielectrics Chapter 6: Capacitance Capacitance Parallel Plate Capacitors Coaxial and Concentric Capacitors Multiple Dielectric Capacitors, Series and Parallel Combinations Potential Stored Energy and Force in Capacitors Chapter 7: Poisson's and Laplace Equations Laplace's Equation Poisson's Equation Iteration Method Images Chapter 8: Steady Magnetic Fields Biot-Savart's Law Ampere's Law Magnetic Flux and Flux Density Vector Magnetic Potential H-Field Chapter 9: Forces in Steady Magnetic Fields Forces on Moving Charges Forces on Differential Current Elements Forces on Conductors Carrying Currents Magnetization Magnetic Boundary Conditions Potential Energy of Magnetic Fields Chapter 10: Magnetic Circuits Reluctance and Permeance Determination of Ampere-Turns Flux Produced by a Given mmf Self and Mutual Inductance Force and Torque in Magnetic Circuits Chapter 11: Time - Varying Fields and Maxwell's Equations Faraday's Law Maxwell's Equations Displacement Current Generators Chapter 12: Plane Waves Energy and the Poynting Vector Normal Incidence Boundary Conditions Plane Waves in Conducting Dielectric Media Plane Waves in Free Space Plane Waves and Current Density Chapter 13: Transmission Lines Equations of Transmission Lines Input Impedances Smith Chart Matching Reflection Coefficient Chapter 14: Wave Guides and Antennas Cutoff Frequencies for TE and TM Modes Propagation and Attenuation Constants Field Components in Wave-Guides Absorbed and Transmitted Power Characteristics of Antennas Radiated and Absorbed Power of Antennas SECTION II - Summary of Electromagnetic Propagation in Conducting Media II-1 Basic Equations and Theorems Maxwell's Equation Auxiliary Potentials Harmonic Time Variation Particular Solutions for an Unbounded Homogenous Region with Sources Poynting Vector Reciprocity Theorem Boundary Conditions Uniqueness Theorems TM and TE Field Analysis II-2 Plane Waves Uniform Plane Waves Nonuniform Plane Waves Reflection and Refraction at a Plane Surface Refraction in a Conducting Medium Surface Waves Plane Waves in Layered Media Impedance Boundary Conditions Propogation into a conductor with a Rough Surface II-3 Electromagnetic Field of Dipole Sources Infinite Homogenous Conducting Medium Semi-Infinite Homogenous Conducting Medium Static Electric Dipole Harmonic Dipole Sources Far Field Near Field Quasi-Static Field Layered Conducting Half Space II-4 Electromagnetic Field of Long Line Sources and Finite Length Electric Antennas Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Semi-Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Layered Conducting Half Space Long Line Source Finite Length Electric Antenna Appendix Parameters of Conducting Media Dipole Approximation Scattering Antenna Impedance ELF and VLF Atmospheric Noise Index WHAT THIS BOOK IS FOR Students have generally found electromagnetics a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of electromagnetics continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of electromagnetics terms also contribute to the difficulties of mastering the subject. In a study of electromagnetics, REA found the following basic reasons underlying the inherent difficulties of electromagnetics: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem which leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an electromagnetics professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing electromagnetics processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to electromagnetics than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in electromagnetics overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers electromagnetics a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.



The Electromagnetics Problem Solver


The Electromagnetics Problem Solver
DOWNLOAD
Author : Max Fogiel
language : en
Publisher:
Release Date : 1983

The Electromagnetics Problem Solver written by Max Fogiel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Electromagnetism categories.




Electromagnetic Field Theory


Electromagnetic Field Theory
DOWNLOAD
Author : Markus Zahn
language : en
Publisher: John Wiley & Sons
Release Date : 1979-05-31

Electromagnetic Field Theory written by Markus Zahn and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1979-05-31 with Science categories.


Develops problem solving confidence through a series of increasingly complex worked examples, emphasizing problems based on physical processes, devices, and models. Covers charges as the source of the electric field coupled to polarizable and conducting media with negligible magnetic field; currents as the source of the magnetic field coupled to magnetizable media with electromagnetic induction generating an electric field; and electrodynamics where the electric and magnetic fields are of equal importance resulting in radiating waves. Presents sample problems and solutions for each new concept, using different problem solving methods to demonstrate advantages and limitations of each approach. Clarifies the rigorous mathematical development by describing systems with linear, constant co-efficient differential and difference equations.



2008 Solved Problems In Electromagnetics


2008 Solved Problems In Electromagnetics
DOWNLOAD
Author : S. A. Nasar
language : en
Publisher: SciTech Publishing
Release Date : 2008

2008 Solved Problems In Electromagnetics written by S. A. Nasar and has been published by SciTech Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Science categories.


This book covers the following areas: vector analysis; electrostatics; magnetostatics; Maxwell's equation; plane waves; transmission lines; waveguides; cavity resonator; and antenna.



Problem Solving In Electromagnetics Microwave Circuit And Antenna Design For Communications Engineering


Problem Solving In Electromagnetics Microwave Circuit And Antenna Design For Communications Engineering
DOWNLOAD
Author : Karl F. Warnick
language : en
Publisher: Artech House Publishers
Release Date : 2006

Problem Solving In Electromagnetics Microwave Circuit And Antenna Design For Communications Engineering written by Karl F. Warnick and has been published by Artech House Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Science categories.


Presenting a wide range of real-world electromagnetics problems, this one-of-a-kind resource offers professionals and students complete, step-by-step solutions to the most critical challenges relating to antenna and microwave circuit design. The book serves as a practical standalone reference or as a perfect complement to the text Electromagnetics, Microwave Circuit, and Antenna Design for Communications Engineering, Second Edition by Peter Russer (Artech House, 2006). Readers find in-depth coverage of the concepts, methods and theorems they need to understand to effectively tackle critical problems in the field. Including numerous graphical illustrations and simplifying mathematical computations, the book offers a deep and intuitive understanding of the subject.



Electromagnetics And Calculation Of Fields


Electromagnetics And Calculation Of Fields
DOWNLOAD
Author : Nathan Ida
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-07

Electromagnetics And Calculation Of Fields written by Nathan Ida and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-07 with Technology & Engineering categories.


Intended for undergraduate students of electrical engineering, this introduction to electromagnetic fields emphasizes the computation of fields as well as the development of theoretical relations. The first part thus presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, while the second part presents computational methods of solving the equations - which for most practical calses cannot be solved analytically.



Sophisticated Electromagnetic Forward Scattering Solver Via Deep Learning


Sophisticated Electromagnetic Forward Scattering Solver Via Deep Learning
DOWNLOAD
Author : Qiang Ren
language : en
Publisher: Springer Nature
Release Date : 2021-10-20

Sophisticated Electromagnetic Forward Scattering Solver Via Deep Learning written by Qiang Ren and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-20 with Technology & Engineering categories.


This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.



Inverse Problems In Electric Circuits And Electromagnetics


Inverse Problems In Electric Circuits And Electromagnetics
DOWNLOAD
Author : N.V. Korovkin
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-14

Inverse Problems In Electric Circuits And Electromagnetics written by N.V. Korovkin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-14 with Technology & Engineering categories.


The design and development of electrical devices involves choosing from many possible variants that which is the best or optimum according to one or several criteria. These optimization criteria are usually already clear to the designer at the statement of the design problem. The methods of optimization considered in this book, allow us to sort out variants of the realization of a design on the basis of these criteria and to create the best device in the sense of the set criteria. Optimization of devices is one of the major problems in electrical engi neering that is related to an extensive class of inverse problems including synthesis, diagnostics, fault detection, identification, and some others with common mathematical properties. When designing a device, the engineer ac tually solves inverse problems by defining the device structure and its pa rameters, and then proceeds to deal with the technical specifications followed by the incorporation of his own notions of the best device. Frequently the so lutions obtained are based on intuition and previous experience. New meth ods and approaches discussed in this book will add mathematical rigor to these intuitive notions. By virtue of their urgency inverse problems have been investigated for more than a century. However, general methods for their solution have been developed only recently. An analysis of the scientific literature indicates a steadily growing interest among scientists and engineers in these problems.



Monte Carlo Methods For Electromagnetics


Monte Carlo Methods For Electromagnetics
DOWNLOAD
Author : Matthew N.O. Sadiku
language : en
Publisher: CRC Press
Release Date : 2018-10-03

Monte Carlo Methods For Electromagnetics written by Matthew N.O. Sadiku and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-03 with Mathematics categories.


Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace’s and Poisson’s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.