Deep Learning With Python Deep Learning Tutorial For Beginners
DOWNLOAD
Download Deep Learning With Python Deep Learning Tutorial For Beginners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning With Python Deep Learning Tutorial For Beginners book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning With Python Deep Learning Tutorial For Beginners
DOWNLOAD
Author : BYRON DAVES
language : en
Publisher: BYRON DAVES
Release Date :
Deep Learning With Python Deep Learning Tutorial For Beginners written by BYRON DAVES and has been published by BYRON DAVES this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
Deep Learning With Python | Deep Learning Tutorial For Beginners "Deep Learning with Python" will provide you with detailed and comprehensive knowledge of Deep Learning, How it came into emergence. The various subparts of Data Science, how they are related, and How Deep Learning is revolutionalizing the world we live in. What is Deep Learning Applications of Deep Learning Structure of Perceptron Demo: Perceptron from scratch What is a Neural Network ? Demo: Creating Deep Neural Nets
Python Machine Learning
DOWNLOAD
Author : Samuel Burns
language : en
Publisher: Step-By-Step Tutorial for Begi
Release Date : 2019-03-13
Python Machine Learning written by Samuel Burns and has been published by Step-By-Step Tutorial for Begi this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-13 with Computers categories.
You are interested in becoming a machine learning expert but don't know where to start from? Don't worry you don't need a big boring and expensive Textbook. This book is the best guide for you. Get your copy NOW!! Why this guide is the best one for Data Scientist? Here are the reasons:The author has explored everything about machine learning and deep learning right from the basics. A simple language has been used. Many examples have been given, both theoretically and programmatically. Screenshots showing program outputs have been added. The book is written chronologically, in a step-by-step manner. Book Objectives: The Aims and Objectives of the Book: To help you understand the basics of machine learning and deep learning. Understand the various categories of machine learning algorithms. To help you understand how different machine learning algorithms work. You will learn how to implement various machine learning algorithms programmatically in Python. To help you learn how to use Scikit-Learn and TensorFlow Libraries in Python. To help you know how to analyze data programmatically to extract patterns, trends, and relationships between variables. Who this Book is for? Here are the target readers for this book: Anybody who is a complete beginner to machine learning in Python. Anybody who needs to advance their programming skills in Python for machine learning programming and deep learning. Professionals in data science. Professors, lecturers or tutors who are looking to find better ways to explain machine learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X Numpy Pandas Matplotlib The Author guides you on how to install the rest of the Python libraries that are required for machine learning and deep learning. What is inside the book: Getting Started Environment Setup Using Scikit-Learn Linear Regression with Scikit-Learn k-Nearest Neighbors Algorithm K-Means Clustering Support Vector Machines Neural Networks with Scikit-learn Random Forest Algorithm Using TensorFlow Recurrent Neural Networks with TensorFlow Linear Classifier This book will teach you machine learning classifiers using scikit-learn and tenserflow . The book provides a great overview of functions you can use to build a support vector machine, decision tree, perceptron, and k-nearest neighbors. Thanks of this book you will be able to set up a learning pipeline that handles input and output data, pre-processes it, selects meaningful features, and applies a classifier on it. This book offers a lot of insight into machine learning for both beginners, as well as for professionals, who already use some machine learning techniques. Concepts and the background of these concepts are explained clearly in this tutorial.
Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch
DOWNLOAD
Author : Samuel Burns
language : en
Publisher: Step-By-Step Tutorial for Begi
Release Date : 2019-04-03
Python Deep Learning Develop Your First Neural Network In Python Using Tensorflow Keras And Pytorch written by Samuel Burns and has been published by Step-By-Step Tutorial for Begi this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-03 with Computers categories.
Build your Own Neural Network today. Through easy-to-follow instruction and examples, you'll learn the fundamentals of Deep learning and build your very own Neural Network in Python using TensorFlow, Keras, PyTorch, and Theano. While you have the option of spending thousands of dollars on big and boring textbooks, we recommend getting the same pieces of information for a fraction of the cost. So Get Your Copy Now!! Why this book? Book ObjectivesThe following are the objectives of this book: To help you understand deep learning in detail To help you know how to get started with deep learning in Python by setting up the coding environment. To help you transition from a deep learning Beginner to a Professional. To help you learn how to develop a complete and functional artificial neural network model in Python on your own. Who this Book is for? The author targets the following groups of people: Anybody who is a complete beginner to deep learning with Python. Anybody in need of advancing their Python for deep learning skills. Professors, lecturers or tutors who are looking to find better ways to explain Deep Learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X. TensorFlow . Keras . PyTorch The Author guides you on how to install the rest of the Python libraries that are required for deep learning.The author will guide you on how to install and configure the rest. What is inside the book? What is Deep Learning? An Overview of Artificial Neural Networks. Exploring the Libraries. Installation and Setup. TensorFlow Basics. Deep Learning with TensorFlow. Keras Basics. PyTorch Basics. Creating Convolutional Neural Networks with PyTorch. Creating Recurrent Neural Networks with PyTorch. From the back cover. Deep learning is part of machine learning methods based on learning data representations. This book written by Samuel Burns provides an excellent introduction to deep learning methods for computer vision applications. The author does not focus on too much math since this guide is designed for developers who are beginners in the field of deep learning. The book has been grouped into chapters, with each chapter exploring a different feature of the deep learning libraries that can be used in Python programming language. Each chapter features a unique Neural Network architecture including Convolutional Neural Networks. After reading this book, you will be able to build your own Neural Networks using Tenserflow, Keras, and PyTorch. Moreover, the author has provided Python codes, each code performing a different task. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand.
A Complete Tutorial
DOWNLOAD
Author : Austin Wren
language : en
Publisher: Independently Published
Release Date : 2025-03-03
A Complete Tutorial written by Austin Wren and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-03 with Computers categories.
Master the Art of Machine Learning with Python: From Beginner to Expert Unlock the potential of machine learning with "A Complete Tutorial: Mastering Machine Learning with Python," your comprehensive guide to the exciting world of artificial intelligence. Authored by Austin Wren, this book is designed for learners of all levels, providing an in-depth exploration of machine learning from basic concepts to advanced techniques. What You Will Learn: Python Basics: Refresh your Python skills with a complete Python crash course necessary for machine learning. Data Handling: Master the art of processing and preparing data, ensuring your models have the best foundation for success. Core Machine Learning Algorithms: Dive into a variety of algorithms, including regression, decision trees, and neural networks, and understand when and how to use them effectively. Advanced Techniques: Advance your skills with techniques like model optimization, hyperparameter tuning, and ensemble learning to improve your model's accuracy and efficiency. Practical Projects: Apply your knowledge with real-world projects that cover predicting sales, image classification, and sentiment analysis. Why This Book? Hands-On Approach: Each chapter includes practical examples and exercises to reinforce learning, making complex concepts accessible. Latest Tools and Technologies: Learn with the latest Python libraries and tools, ensuring you are up to speed with industry standards. Expert Insights: Gain insights from Austin Wren's extensive experience in machine learning, providing you with tips and tricks that go beyond the basics. Perfect for: Beginners looking to make a strong start in machine learning. Intermediate learners wanting to deepen their understanding of specific machine learning aspects. Professionals seeking to enhance their skills in practical machine learning applications. About the Author: Austin Wren is a renowned data scientist and educator in the field of machine learning, with over a decade of experience in turning data into actionable insights. Get ready to transform your understanding of machine learning and turn knowledge into action. Dive into "A Complete Tutorial: Mastering Machine Learning with Python" and begin your journey to becoming a machine learning expert today! Available exclusively on Amazon.
Deep Learning With Pytorch
DOWNLOAD
Author : Jerry N. P
language : en
Publisher: Independently Published
Release Date : 2019-01-29
Deep Learning With Pytorch written by Jerry N. P and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.
This book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the concept of graphs. The author helps you know how build neural network graphs in PyTorch. Deep learning in Python with PyTorch simply involves the creation of neural network models. The author helps you understand how to create neural network models with TensorFlow. You are guided on how to train such models with data of various types. Examples of such data include images and text. The process of loading your own data into PyTorch for training neural network models has also been discussed. You will also know how to use the inbuilt data for training your neural network models. This book will help you to understand: - Why PyTorch for Deep Learning? - Getting Started with PyTorch - Building a Neural Network - Loading and Processing Data - Convolutional Neural Networks - Transfer Learning - Developing Distributed Applications - Word Embeddings - Moving a Model from PyTorch to Caffe2 - Custom C Extensions - Neural Transfer with PyTorch Tags: pytorch deep learning, python programming, python, python data science handbook, neural network python, tensorflow python, tensorflow for deep learning, python code programming.
Python Machine Learning
DOWNLOAD
Author : Moubachir Madani Fadoul
language : en
Publisher:
Release Date : 2020-05-31
Python Machine Learning written by Moubachir Madani Fadoul and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-31 with categories.
Have you always wanted to learn deep learning but are afraid it'll be too difficult for you? This book is for you.Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.Book DescriptionPython Machine Learning, is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and working examples, the book covers most of the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, this tutorial book teaches the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow, skit-learn, Keras, and theano, this edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores analysis by giving some examples, helping you learn how to use machine learning algorithms to classify or predict documents output.This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn-Master the frameworks, models, and techniques that enable machines to 'learn' from data-Use scikit-learn for machine learning and TensorFlow for deep learning-Apply machine learning to classification, predict predict customer churning, and more-Build and train neural networks, GANs, CNN, and other models-Discover best practices for evaluating and tuning models-Predict target outcomes using optimization algorithm such as Gradient Descent algorithm analysis-Overcome challenges in deep learning algorithms by using dropout, regulation-Who This Book Is ForIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.Table of Contents1.Giving Computers the Ability to Learn from Data2.Training Simple ML Algorithms for Classification3.ML Classifiers Using scikit-learn4.Building Good Training Datasets - Data Preprocessing5.Compressing Data via Dimensionality Reduction6.Best Practices for Model Evaluation and Hyperparameter Tuning7.Combining Different Models for Ensemble Learning8.Predicting Continuous Target Variables with supversized learning 9.Implementing Multilayer Artificial Neural Networks10.Modeling Sequential Data Using Recurrent Neural Networks11.GANs for Synthesizing New Data...and so much more....In every chapter, you can edit the examples online
Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12
Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.
Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.
Python Machine Learning For Beginners
DOWNLOAD
Author : Finn Sanders
language : en
Publisher: Roland Bind
Release Date : 2019-05-22
Python Machine Learning For Beginners written by Finn Sanders and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Computers categories.
Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin? This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it. If you have used a search engine, worked with photo recognition, or done speech recognition devices on your phone, then you have worked with machine learning. And if you combine it with the Python programming language, it is faster, more powerful, and easier (even for beginners) to create your own programs today. Python is considered the ultimate coding language for beginners, but once you start to use it, you will never be able to tell. Many of the best programs out there use this language behind them, and if you are a beginner who is ready to learn, this is a great place to start. If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you. ★★Some of the topics that we will discuss include★★ ♦ The Fundamentals of Machine Learning, Deep learning, And Neural Networks ♦ How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You ♦ How To Master Neural Network Implementation Using Different Libraries ♦ How Random Forest Algorithms Are Able To Help Out With Machine Learning ♦ How To Uncover Hidden Patterns And Structures With Clustering ♦ How Recurrent Neural Networks Work And When To Use ♦ The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning ♦ And Much More! This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like. If you want to learn more about how to make the best programs with Python Machine learning, buy the book today!
Python Machine Learning
DOWNLOAD
Author : Railey Brandon
language : en
Publisher: Roland Bind
Release Date : 2019-04-25
Python Machine Learning written by Railey Brandon and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-25 with Computers categories.
★☆Have you come across the terms machine learning and neural networks in most articles you have recently read? Do you also want to learn how to build a machine learning model that will answer your questions within a blink of your eyes?☆★ If you responded yes to any of the above questions, you have come to the right place. Machine learning is an incredibly dense topic. It's hard to imagine condensing it into an easily readable and digestible format. However, this book aims to do exactly that. Machine learning and artificial intelligence have been used in different machines and applications to improve the user's experience. One can also use machine learning to make data analysis and predicting the output for some data sets easy. All you need to do is choose the right algorithm, train the model and test the model before you apply it on any real-world tool. It is that simple isn't it? ★★Apart from this, you will also learn more about★★ ♦ The Different Types Of Learning Algorithm That You Can Expect To Encounter ♦ The Numerous Applications Of Machine Learning And Deep Learning ♦ The Best Practices For Picking Up Neural Networks ♦ What Are The Best Languages And Libraries To Work With ♦ The Various Problems That You Can Solve With Machine Learning Algorithms ♦ And much more... Well, you can do it faster if you use Python. This language has made it easy for any user, even an amateur, to build a strong machine learning model since it has numerous directories and libraries that make it easy for one to build a model. Do you want to know how to build a machine learning model and a neural network? So, what are you waiting for? Grab a copy of this book now!
Step By Step Tutorials On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui
DOWNLOAD
Author : RISMON HASIHOLAN. SIANIPAR
language : en
Publisher:
Release Date : 2021
Step By Step Tutorials On Deep Learning Using Scikit Learn Keras And Tensorflow With Python Gui written by RISMON HASIHOLAN. SIANIPAR and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.