Deep Learning Projects Using Tensorflow 2
DOWNLOAD
Download Deep Learning Projects Using Tensorflow 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning Projects Using Tensorflow 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning Projects Using Tensorflow 2
DOWNLOAD
Author : Vinita Silaparasetty
language : en
Publisher: Apress
Release Date : 2020-08-08
Deep Learning Projects Using Tensorflow 2 written by Vinita Silaparasetty and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-08 with Computers categories.
Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications. Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts. The best way to learn is by doing. You'll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You'll also work with Neural Networks and other deep learning concepts. By the end of the book, you'll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application. What You'll Learn Grasp the basic process of neural networks through projects, such as creating music Restore and colorize black and white images with deep learning processes Who This Book Is For Beginners new to TensorFlow and Python.
Advanced Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Rowel Atienza
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-02-28
Advanced Deep Learning With Tensorflow 2 And Keras written by Rowel Atienza and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.
Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras Key FeaturesExplore the most advanced deep learning techniques that drive modern AI resultsNew coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentationCompletely updated for TensorFlow 2.xBook Description Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learnUse mutual information maximization techniques to perform unsupervised learningUse segmentation to identify the pixel-wise class of each object in an imageIdentify both the bounding box and class of objects in an image using object detectionLearn the building blocks for advanced techniques - MLPss, CNN, and RNNsUnderstand deep neural networks - including ResNet and DenseNetUnderstand and build autoregressive models – autoencoders, VAEs, and GANsDiscover and implement deep reinforcement learning methodsWho this book is for This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.
What S New In Tensorflow 2 0
DOWNLOAD
Author : Ajay Baranwal
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-12
What S New In Tensorflow 2 0 written by Ajay Baranwal and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Computers categories.
Get to grips with key structural changes in TensorFlow 2.0 Key FeaturesExplore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystemLearn and implement best practices for building data ingestion pipelines using TF 2.0 APIsMigrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlesslyBook Description TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly. What you will learnImplement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade modelsBuild models with Keras integration and eager executionExplore distribution strategies to run models on GPUs and TPUsPerform what-if analysis with TensorBoard across a variety of modelsDiscover Vision Kit, Voice Kit, and the Edge TPU for model deploymentsBuild complex input data pipelines for ingesting large training datasetsWho this book is for If you’re a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.
Machine Learning And Deep Learning Using Python And Tensorflow
DOWNLOAD
Author : Venkata Reddy Konasani
language : en
Publisher: McGraw Hill Professional
Release Date : 2021-04-29
Machine Learning And Deep Learning Using Python And Tensorflow written by Venkata Reddy Konasani and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-29 with Technology & Engineering categories.
Understand the principles and practices of machine learning and deep learning This hands-on guide lays out machine learning and deep learning techniques and technologies in a style that is approachable, using just the basic math required. Written by a pair of experts in the field, Machine Learning and Deep Learning Using Python and TensorFlow contains case studies in several industries, including banking, insurance, e-commerce, retail, and healthcare. The book shows how to utilize machine learning and deep learning functions in today’s smart devices and apps. You will get download links for datasets, code, and sample projects referred to in the text. Coverage includes: Machine learning and deep learning concepts Python programming and statistics fundamentals Regression and logistic regression Decision trees Model selection and cross-validation Cluster analysis Random forests and boosting Artificial neural networks TensorFlow and Keras Deep learning hyperparameters Convolutional neural networks Recurrent neural networks and long short-term memory
Deep Learning Crash Course For Beginners With Python
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-05-25
Deep Learning Crash Course For Beginners With Python written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-25 with categories.
Artificial intelligence is the rage today! While you may find it difficult to understand the most recent advancements in AI, it simply boils down to two most celebrated developments: Machine Learning and Deep Learning. In 2020, Deep Learning is leagues ahead because of its supremacy when it comes to accuracy, especially when trained with enormous amounts of data. Deep Learning, essentially, is a subset of Machine Learning, but it's capable of achieving tremendous power and flexibility. And the era of big data technology presents vast opportunities for incredible innovations in deep learning. How Is This Book Different? This book gives equal importance to the theoretical as well as practical aspects of deep learning. You will understand how high-performing deep learning algorithms work. In every chapter, the theoretical explanation of the different types of deep learning techniques is followed by practical examples. You will learn how to implement different deep learning techniques using the TensorFlow Keras library for Python. Each chapter contains exercises that you can use to assess your understanding of the concepts explained in that chapter. Also, in the Resources, the Python notebook for each chapter is provided. The key advantage of buying this book is you get instant access to all the extra content presented with this book--Python codes, references, exercises, and PDFs--on the publisher's website. You don't need to spend an extra cent. The datasets used in this book are either downloaded at runtime or are available in the Resources/Datasets folder. Another advantage is a detailed explanation of the installation steps for the software that you will need to implement the various deep learning algorithms in this book is provided. That is, you get to experiment with the practical aspects of Deep Learning right from page 1. Even if you are new to Python, you will find the crash course on Python programming language in the first chapter immensely useful. Since all the codes and datasets are included with this book, you only need access to a computer with the internet to get started. The topics covered include: Python Crash Course Deep Learning Prerequisites: Linear and Logistic Regression Neural Networks from Scratch in Python Introduction to TensorFlow and Keras Convolutional Neural Networks Sequence Classification with Recurrent Neural Networks Deep Learning for Natural Language Processing Unsupervised Learning with Autoencoders Answers to All Exercises Click the BUY button and download the book now to start your Deep Learning journey.
Tensorflow Machine Learning Projects
DOWNLOAD
Author : Ankit Jain
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30
Tensorflow Machine Learning Projects written by Ankit Jain and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.
Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Tensorflow 2 0 Computer Vision Cookbook
DOWNLOAD
Author : Jesus Martinez
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-26
Tensorflow 2 0 Computer Vision Cookbook written by Jesus Martinez and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-26 with Computers categories.
Get well versed with state-of-the-art techniques to tailor training processes and boost the performance of computer vision models using machine learning and deep learning techniques Key FeaturesDevelop, train, and use deep learning algorithms for computer vision tasks using TensorFlow 2.xDiscover practical recipes to overcome various challenges faced while building computer vision modelsEnable machines to gain a human level understanding to recognize and analyze digital images and videosBook Description Computer vision is a scientific field that enables machines to identify and process digital images and videos. This book focuses on independent recipes to help you perform various computer vision tasks using TensorFlow. The book begins by taking you through the basics of deep learning for computer vision, along with covering TensorFlow 2.x's key features, such as the Keras and tf.data.Dataset APIs. You'll then learn about the ins and outs of common computer vision tasks, such as image classification, transfer learning, image enhancing and styling, and object detection. The book also covers autoencoders in domains such as inverse image search indexes and image denoising, while offering insights into various architectures used in the recipes, such as convolutional neural networks (CNNs), region-based CNNs (R-CNNs), VGGNet, and You Only Look Once (YOLO). Moving on, you'll discover tips and tricks to solve any problems faced while building various computer vision applications. Finally, you'll delve into more advanced topics such as Generative Adversarial Networks (GANs), video processing, and AutoML, concluding with a section focused on techniques to help you boost the performance of your networks. By the end of this TensorFlow book, you'll be able to confidently tackle a wide range of computer vision problems using TensorFlow 2.x. What you will learnUnderstand how to detect objects using state-of-the-art models such as YOLOv3Use AutoML to predict gender and age from imagesSegment images using different approaches such as FCNs and generative modelsLearn how to improve your network's performance using rank-N accuracy, label smoothing, and test time augmentationEnable machines to recognize people's emotions in videos and real-time streamsAccess and reuse advanced TensorFlow Hub models to perform image classification and object detectionGenerate captions for images using CNNs and RNNsWho this book is for This book is for computer vision developers and engineers, as well as deep learning practitioners looking for go-to solutions to various problems that commonly arise in computer vision. You will discover how to employ modern machine learning (ML) techniques and deep learning architectures to perform a plethora of computer vision tasks. Basic knowledge of Python programming and computer vision is required.
Applied Deep Learning With Tensorflow 2
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher:
Release Date : 2022
Applied Deep Learning With Tensorflow 2 written by Umberto Michelucci and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects. This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks. All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be opened directly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally. You will: • Understand the fundamental concepts of how neural networks work • Learn the fundamental ideas behind autoencoders and generative adversarial networks • Be able to try all the examples with complete code examples that you can expand for your own projects • Have available a complete online companion book with examples and tutorials. This book is for: Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming.
Intelligent Projects Using Python
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Intelligent Projects Using Python written by Santanu Pattanayak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.
Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key FeaturesA go-to guide to help you master AI algorithms and concepts8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillanceUse TensorFlow, Keras, and other Python libraries to implement smart AI applicationsBook Description This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learnBuild an intelligent machine translation system using seq-2-seq neural translation machinesCreate AI applications using GAN and deploy smart mobile apps using TensorFlowTranslate videos into text using CNN and RNNImplement smart AI Chatbots, and integrate and extend them in several domainsCreate smart reinforcement, learning-based applications using Q-LearningBreak and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is for This book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book
Machine Learning Projects For Mobile Applications
DOWNLOAD
Author : Karthikeyan NG
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31
Machine Learning Projects For Mobile Applications written by Karthikeyan NG and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Bring magic to your mobile apps using TensorFlow Lite and Core ML Key FeaturesExplore machine learning using classification, analytics, and detection tasks.Work with image, text and video datasets to delve into real-world tasksBuild apps for Android and iOS using Caffe, Core ML and Tensorflow LiteBook Description Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so. The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google’s ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN. By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML. What you will learnDemystify the machine learning landscape on mobileAge and gender detection using TensorFlow Lite and Core MLUse ML Kit for Firebase for in-text detection, face detection, and barcode scanningCreate a digit classifier using adversarial learningBuild a cross-platform application with face filters using OpenCVClassify food using deep CNNs and TensorFlow Lite on iOS Who this book is for Machine Learning Projects for Mobile Applications is for you if you are a data scientist, machine learning expert, deep learning, or AI enthusiast who fancies mastering machine learning and deep learning implementation with practical examples using TensorFlow Lite and CoreML. Basic knowledge of Python programming language would be an added advantage.