Download Deep Learning On Embedded Systems - eBooks (PDF)

Deep Learning On Embedded Systems


Deep Learning On Embedded Systems
DOWNLOAD

Download Deep Learning On Embedded Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning On Embedded Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning On Embedded Systems


Deep Learning On Embedded Systems
DOWNLOAD
Author : Tariq M. Arif
language : en
Publisher: John Wiley & Sons
Release Date : 2025-04-29

Deep Learning On Embedded Systems written by Tariq M. Arif and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-29 with Technology & Engineering categories.


Comprehensive, accessible introduction to deep learning for engineering tasks through Python programming, low-cost hardware, and freely available software Deep Learning On Embedded Systems is a comprehensive guide to the practical implementation of deep learning for engineering tasks through computers and embedded hardware such as Raspberry Pi and Nvidia Jetson Nano. After an introduction to the field, the book provides fundamental knowledge on deep learning, convolutional and recurrent neural networks, computer vision, and basics of Linux terminal and docker engines. This book shows detailed setup steps of Jetson Nano and Raspberry Pi for utilizing essential frameworks such as PyTorch and OpenCV. GPU configuration and dependency installation procedure for using PyTorch is also discussed allowing newcomers to seamlessly navigate the learning curve. A key challenge of utilizing deep learning on embedded systems is managing limited GPU and memory resources. This book outlines a strategy of training complex models on a desktop computer and transferring them to embedded systems for inference. Also, students and researchers often face difficulties with the varying probabilistic theories and notations found in data science literature. To simplify this, the book mainly focuses on the practical implementation part of deep learning using Python programming, low-cost hardware, and freely available software such as Anaconda and Visual Studio Code.To aid in reader learning, questions and answers are included at the end of most chapters. Written by a highly qualified author, Deep Learning On Embedded Systems includes discussion on: Fundamentals of deep learning, including neurons and layers, activation functions, network architectures, hyperparameter tuning, and convolutional and recurrent neural networks (CNNs & RNNs) PyTorch, OpenCV, and other essential framework setups for deep transfer learning, along with Linux terminal operations, docker engine, docker images, and virtual environments in embedded devices. Training models for image classification and object detection with classification, then converting trained PyTorch models to ONNX format for efficient deployment on Jetson Nano and Raspberry Pi. Deep Learning On Embedded Systems serves as an excellent introduction to the field for undergraduate engineering students seeking to learn deep learning implementations for their senior capstone or class projects and graduate researchers and educators who wish to implement deep learning in their research.



Tinyml


Tinyml
DOWNLOAD
Author : Pete Warden
language : en
Publisher: O'Reilly Media
Release Date : 2019-12-16

Tinyml written by Pete Warden and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.


Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size



Embedded Machine Learning For Cyber Physical Iot And Edge Computing


Embedded Machine Learning For Cyber Physical Iot And Edge Computing
DOWNLOAD
Author : Sudeep Pasricha
language : en
Publisher: Springer Nature
Release Date : 2023-10-09

Embedded Machine Learning For Cyber Physical Iot And Edge Computing written by Sudeep Pasricha and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-09 with Computers categories.


This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.



Learning In Embedded Systems


Learning In Embedded Systems
DOWNLOAD
Author : Leslie Pack Kaelbling
language : en
Publisher: MIT Press
Release Date : 1993

Learning In Embedded Systems written by Leslie Pack Kaelbling and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.


Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics and machine learning. Presenting interesting, new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial and error experience with an external world. The text is a detailed exploration of the problem of learning action strategies in the context of designing embedded systems that adapt their behaviour to a complex, changing environment. Such systems include mobile robots, factory process controllers and long-term software databases.



Embedded Deep Learning


Embedded Deep Learning
DOWNLOAD
Author : Bert Moons
language : en
Publisher: Springer
Release Date : 2018-10-23

Embedded Deep Learning written by Bert Moons and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Technology & Engineering categories.


This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.



Embedded Artificial Intelligence


Embedded Artificial Intelligence
DOWNLOAD
Author : Ovidiu Vermesan
language : en
Publisher: CRC Press
Release Date : 2023-05-05

Embedded Artificial Intelligence written by Ovidiu Vermesan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-05 with Computers categories.


Recent technological developments in sensors, edge computing, connectivity, and artificial intelligence (AI) technologies have accelerated the integration of data analysis based on embedded AI capabilities into resource-constrained, energy-efficient hardware devices for processing information at the network edge. Embedded AI combines embedded machine learning (ML) and deep learning (DL) based on neural networks (NN) architectures such as convolutional NN (CNN), or spiking neural network (SNN) and algorithms on edge devices and implements edge computing capabilities that enable data processing and analysis without optimised connectivity and integration, allowing users to access data from various sources. Embedded AI efficiently implements edge computing and AI processes on resource-constrained devices to mitigate downtime and service latency, and it successfully merges AI processes as a pivotal component in edge computing and embedded system devices. Embedded AI also enables users to reduce costs, communication, and processing time by assembling data and by supporting user requirements without the need for continuous interaction with physical locations. This book provides an overview of the latest research results and activities in industrial embedded AI technologies and applications, based on close cooperation between three large-scale ECSEL JU projects, AI4DI, ANDANTE, and TEMPO. The book’s content targets researchers, designers, developers, academics, post-graduate students and practitioners seeking recent research on embedded AI. It combines the latest developments in embedded AI, addressing methodologies, tools, and techniques to offer insight into technological trends and their use across different industries.



Tinyml


Tinyml
DOWNLOAD
Author : Pete Warden
language : en
Publisher:
Release Date : 2019

Tinyml written by Pete Warden and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Arduino (Programmable controller) categories.


Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size-small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size.



Machine Learning For Embedded System Security


Machine Learning For Embedded System Security
DOWNLOAD
Author : Basel Halak
language : en
Publisher: Springer Nature
Release Date : 2022-04-22

Machine Learning For Embedded System Security written by Basel Halak and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-22 with Technology & Engineering categories.


This book comprehensively covers the state-of-the-art security applications of machine learning techniques. The first part explains the emerging solutions for anti-tamper design, IC Counterfeits detection and hardware Trojan identification. It also explains the latest development of deep-learning-based modeling attacks on physically unclonable functions and outlines the design principles of more resilient PUF architectures. The second discusses the use of machine learning to mitigate the risks of security attacks on cyber-physical systems, with a particular focus on power plants. The third part provides an in-depth insight into the principles of malware analysis in embedded systems and describes how the usage of supervised learning techniques provides an effective approach to tackle software vulnerabilities.



Deep Learning In Action Image And Video Processing For Practical Use


Deep Learning In Action Image And Video Processing For Practical Use
DOWNLOAD
Author : Abdussalam Elhanashi
language : en
Publisher: Elsevier
Release Date : 2025-03-12

Deep Learning In Action Image And Video Processing For Practical Use written by Abdussalam Elhanashi and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-12 with Computers categories.


Artificial intelligence technology has entered an extraordinary phase of fast development and wide application. The techniques developed in traditional AI research areas, such as computer vision and object recognition, have found many innovative applications in an array of real-world settings. The general methodological contributions from AI, such as a variety of recently developed deep learning algorithms, have also been applied to a wide spectrum of fields such as surveillance applications, real-time processing, IoT devices, and health care systems. The state-of-the-art and deep learning models have wider applicability and are highly efficient. Deep Learning in Action: Image and Video Processing for Practical Use provides a comprehensive and accessible resource for both intermediate to advanced readers seeking to harness the power of deep learning in the domains of video and image processing. The book bridges the gap between theoretical concepts and practical implementation by emphasizing lightweight approaches, enabling readers to efficiently apply deep learning techniques to real-world scenarios. It focuses on resource-efficient methods, making it particularly relevant in contexts where computational constraints are a concern. - Provides step-by-step guidance on implementing deep learning techniques, specifically for video and image processing tasks in real-world scenarios - Emphasizes lightweight and efficient approaches to deep learning, ensuring that readers learn techniques that are suited to resource-constrained environments - Covers a wide range of real-world applications, such as object detection, image segmentation, video classification - Offers a comprehensive understanding of how deep learning can be leveraged across various domains - Encourages hands-on experience that can be applied to the concepts to existing projects



Embedded Machine Learning With Microcontrollers


Embedded Machine Learning With Microcontrollers
DOWNLOAD
Author : Cem Ünsalan
language : en
Publisher: Springer Nature
Release Date : 2024-10-24

Embedded Machine Learning With Microcontrollers written by Cem Ünsalan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-24 with Computers categories.


This textbook introduces basic embedded machine learning methods by exploring practical applications on STM32 development boards. Covering traditional and neural network-based machine learning methods implemented on microcontrollers, the text is designed for use in courses on microcontrollers, microprocessor systems, and embedded systems. Following the learning by doing approach, the book will enable students to grasp embedded machine learning concepts through real-world examples that will provide them with the design and implementation skills needed for a competitive job market. By utilizing a programming environment that enables students to reach and modify low-level microcontroller properties, the material allows for more control of the developed system. Students will be guided in implementing machine learning methods to be deployed and tested on microcontrollers throughout the book, with the theory behind the implemented methods also emphasized. Sample codes and course slides are available for readers and instructors, and a solutions manual is available to instructors. The book will also be an ideal reference for practicing engineers and electronics hobbyists.