Deep Learning In Object Recognition Detection And Segmentation
DOWNLOAD
Download Deep Learning In Object Recognition Detection And Segmentation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning In Object Recognition Detection And Segmentation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning In Object Recognition Detection And Segmentation
DOWNLOAD
Author : Xiaogang Wang
language : en
Publisher: Foundations and Trends (R) in Signal Processing
Release Date : 2016-07-14
Deep Learning In Object Recognition Detection And Segmentation written by Xiaogang Wang and has been published by Foundations and Trends (R) in Signal Processing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-14 with categories.
Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.
Deep Learning In Object Recognition Detection And Segmentation
DOWNLOAD
Author : Xiaogang Wang
language : en
Publisher:
Release Date : 2016
Deep Learning In Object Recognition Detection And Segmentation written by Xiaogang Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Machine learning categories.
As a major breakthrough in artificial intelligence, deep learning has achieved very impressive success in solving grand challenges in many fields including speech recognition, natural language processing, computer vision, image and video processing, and multimedia. This article provides a historical overview of deep learning and focus on its applications in object recognition, detection, and segmentation, which are key challenges of computer vision and have numerous applications to images and videos. The discussed research topics on object recognition include image classification on ImageNet, face recognition, and video classification. The detection part covers general object detection on ImageNet, pedestrian detection, face landmark detection (face alignment), and human landmark detection (pose estimation). On the segmentation side, the article discusses the most recent progress on scene labeling, semantic segmentation, face parsing, human parsing and saliency detection. Object recognition is considered as whole-image classification, while detection and segmentation are pixelwise classification tasks. Their fundamental differences will be discussed in this article. Fully convolutional neural networks and highly efficient forward and backward propagation algorithms specially designed for pixelwise classification task will be introduced. The covered application domains are also much diversified. Human and face images have regular structures, while general object and scene images have much more complex variations in geometric structures and layout. Videos include the temporal dimension. Therefore, they need to be processed with different deep models. All the selected domain applications have received tremendous attentions in the computer vision and multimedia communities. Through concrete examples of these applications, we explain the key points which make deep learning outperform conventional computer vision systems. (1) Different than traditional pattern recognition systems, which heavily rely on manually designed features, deep learning automatically learns hierarchical feature representations from massive training data and disentangles hidden factors of input data through multi-level nonlinear mappings. (2) Different than existing pattern recognition systems which sequentially design or train their key components, deep learning is able to jointly optimize all the components and crate synergy through close interactions among them. (3) While most machine learning models can be approximated with neural networks with shallow structures, for some tasks, the expressive power of deep models increases exponentially as their architectures go deep. Deep models are especially good at learning global contextual feature representation with their deep structures. (4) Benefitting from the large learning capacity of deep models, some classical computer vision challenges can be recast as high-dimensional data transform problems and can be solved from new perspectives. Finally, some open questions and future works regarding to deep learning in object recognition, detection, and segmentation will be discussed.
Deep Learning And Computer Vision Models And Biomedical Applications
DOWNLOAD
Author : Uma N. Dulhare
language : en
Publisher: Springer Nature
Release Date : 2025-03-08
Deep Learning And Computer Vision Models And Biomedical Applications written by Uma N. Dulhare and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-08 with Computers categories.
This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc.
Advancement Of Deep Learning And Its Applications In Object Detection And Recognition
DOWNLOAD
Author : Roohie Naaz Mir
language : en
Publisher: CRC Press
Release Date : 2023-05-10
Advancement Of Deep Learning And Its Applications In Object Detection And Recognition written by Roohie Naaz Mir and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-10 with Computers categories.
Object detection is a basic visual identification problem in computer vision that has been explored extensively over the years. Visual object detection seeks to discover objects of specific target classes in a given image with pinpoint accuracy and apply a class label to each object instance. Object recognition strategies based on deep learning have been intensively investigated in recent years as a result of the remarkable success of deep learning-based image categorization. In this book, we go through in detail detector architectures, feature learning, proposal generation, sampling strategies, and other issues that affect detection performance. The book describes every newly proposed novel solution but skips through the fundamentals so that readers can see the field's cutting edge more rapidly. Moreover, unlike prior object detection publications, this project analyses deep learning-based object identification methods systematically and exhaustively, and also gives the most recent detection solutions and a collection of noteworthy research trends. The book focuses primarily on step-by-step discussion, an extensive literature review, detailed analysis and discussion, and rigorous experimentation results. Furthermore, a practical approach is displayed and encouraged.
Deep Learning And Computer Vision Models And Biomedical Applications
DOWNLOAD
Author : Uma N. Dulhare
language : en
Publisher: Springer Nature
Release Date : 2025-07-18
Deep Learning And Computer Vision Models And Biomedical Applications written by Uma N. Dulhare and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-18 with Computers categories.
This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc.
Applied Computer Vision Through Artificial Intelligence
DOWNLOAD
Author : Jasminder Kaur Sandhu
language : en
Publisher: John Wiley & Sons
Release Date : 2025-12-16
Applied Computer Vision Through Artificial Intelligence written by Jasminder Kaur Sandhu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-12-16 with Computers categories.
Master the cutting-edge field of computer vision and artificial intelligence with this accessible guide to the applications of machine learning and deep learning for real-world solutions in robotics, healthcare, and autonomous systems. Applied Computer Vision through Artificial Intelligence provides a thorough and accessible exploration of how machine learning and deep learning are driving breakthroughs in computer vision. This book brings together contributions from leading experts to present state-of-the-art techniques, tools, and frameworks, while demonstrating this technology’s applications in healthcare, autonomous systems, surveillance, robotics, and other real-world domains. By blending theory with hands-on insights, this volume equips readers with the knowledge needed to understand, design, and implement AI-powered vision solutions. Structured to serve both academic and professional audiences, the book not only covers cutting-edge algorithms and methodologies but also addresses pressing challenges, ethical considerations, and future research directions. It serves as a comprehensive reference for researchers, engineers, practitioners, and graduate students, making it an indispensable resource for anyone looking to apply artificial intelligence to solve complex computer vision problems in today’s data-driven world.
Applications Of Advanced Machine Intelligence In Computer Vision And Object Recognition Emerging Research And Opportunities
DOWNLOAD
Author : Chakraborty, Shouvik
language : en
Publisher: IGI Global
Release Date : 2020-03-13
Applications Of Advanced Machine Intelligence In Computer Vision And Object Recognition Emerging Research And Opportunities written by Chakraborty, Shouvik and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-13 with Computers categories.
Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
Deep Learning In Computer Vision
DOWNLOAD
Author : Mahmoud Hassaballah
language : en
Publisher: CRC Press
Release Date : 2020-03-23
Deep Learning In Computer Vision written by Mahmoud Hassaballah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-23 with Computers categories.
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
Deep Learning In Object Detection And Recognition
DOWNLOAD
Author : Xiaoyue Jiang
language : en
Publisher: Springer
Release Date : 2018-09-11
Deep Learning In Object Detection And Recognition written by Xiaoyue Jiang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-11 with Computers categories.
This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.
Deep Learning For Marine Science Volume Ii
DOWNLOAD
Author : Haiyong Zheng
language : en
Publisher: Frontiers Media SA
Release Date : 2024-11-07
Deep Learning For Marine Science Volume Ii written by Haiyong Zheng and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-07 with Science categories.
This Research Topic is the second volume of this collection. You can find the original collection via https://www.frontiersin.org/research-topics/45485/deep-learning-for-marine-science Deep learning (DL) is a critical research branch in the fields of artificial intelligence and machine learning, encompassing various technologies such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), Transformer networks and Diffusion models, as well as self-supervised learning (SSL) and reinforcement learning (RL). These technologies have been successfully applied to scientific research and numerous aspects of daily life. With the continuous advancements in oceanographic observation equipment and technology, there has been an explosive growth of ocean data, propelling marine science into the era of big data. As effective tools for processing and analyzing large-scale ocean data, DL techniques have great potential and broad application prospects in marine science. Applying DL to intelligent analysis and exploration of research data in marine science can provide crucial support for various domains, including meteorology and climate, environment and ecology, biology, energy, as well as physical and chemical interactions. Despite the significant progress in DL, its application to the aforementioned marine science domains is still in its early stages, necessitating the full utilization and continuous exploration of representative applications and best practices.