Deep Learning And Its Applications Using Python
DOWNLOAD
Download Deep Learning And Its Applications Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning And Its Applications Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning And Its Applications Using Python
DOWNLOAD
Author : Niha Kamal Basha
language : en
Publisher: John Wiley & Sons
Release Date : 2023-10-31
Deep Learning And Its Applications Using Python written by Niha Kamal Basha and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-31 with Computers categories.
This book thoroughly explains deep learning models and how to use Python programming to implement them in applications such as NLP, face detection, face recognition, face analysis, and virtual assistance (chatbot, machine translation, etc.). It provides hands-on guidance in using Python for implementing deep learning application models. It also identifies future research directions for deep learning.
Deep Learning And Its Applications Using Python
DOWNLOAD
Author : Niha Kamal Basha
language : en
Publisher: John Wiley & Sons
Release Date : 2023-09-27
Deep Learning And Its Applications Using Python written by Niha Kamal Basha and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-27 with Computers categories.
DEEP LEARNING AND ITS APPLICATIONS USING PYTHON This practical book gives a detailed description of deep learning models and their implementation using Python programming relating to computer vision, natural language processing, and other applications. This book thoroughly explains deep learning models and how to use Python programming to implement them in applications such as NLP, face detection, face recognition, face analysis, and virtual assistance (chatbot, machine translation, etc.). It provides hands-on guidance in using Python for implementing deep learning application models. It also identifies future research directions for deep learning. Readers/users will discover A precise description of deep learning history, fundamental concepts, and background information relating to deep learning; A detailed introduction to several concepts including tensorflow and keras, starting from the fundamentals to the application-based concept implementation using Python; Explanations of multilayer perceptron, convolutional neural network, recurrent neural network, and long short-term memory in terms of applications like chatbot, face detection and recognition; Advanced deep learning concepts along with their future research advancements; Assist in building the reader’s understanding through intuitive explanations and practical examples by exploring challenging concepts in the related applications of computer vision, natural language processing, and other models. Audience The book is ideal for computer science researchers, industry professionals, as well as postgraduate and undergraduate students who want to learn how to program deep learning models using Python.
Hands On Python Deep Learning For The Web
DOWNLOAD
Author : Anubhav Singh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-05-15
Hands On Python Deep Learning For The Web written by Anubhav Singh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-15 with Computers categories.
Use the power of deep learning with Python to build and deploy intelligent web applications Key FeaturesCreate next-generation intelligent web applications using Python libraries such as Flask and DjangoImplement deep learning algorithms and techniques for performing smart web automationIntegrate neural network architectures to create powerful full-stack web applicationsBook Description When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices. What you will learnExplore deep learning models and implement them in your browserDesign a smart web-based client using Django and FlaskWork with different Python-based APIs for performing deep learning tasksImplement popular neural network models with TensorFlow.jsDesign and build deep web services on the cloud using deep learningGet familiar with the standard workflow of taking deep learning models into productionWho this book is for This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you’re a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.
Deep Learning Crash Course For Beginners With Python
DOWNLOAD
Author : Ai Publishing
language : en
Publisher:
Release Date : 2020-05-25
Deep Learning Crash Course For Beginners With Python written by Ai Publishing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-25 with categories.
Artificial intelligence is the rage today! While you may find it difficult to understand the most recent advancements in AI, it simply boils down to two most celebrated developments: Machine Learning and Deep Learning. In 2020, Deep Learning is leagues ahead because of its supremacy when it comes to accuracy, especially when trained with enormous amounts of data. Deep Learning, essentially, is a subset of Machine Learning, but it's capable of achieving tremendous power and flexibility. And the era of big data technology presents vast opportunities for incredible innovations in deep learning. How Is This Book Different? This book gives equal importance to the theoretical as well as practical aspects of deep learning. You will understand how high-performing deep learning algorithms work. In every chapter, the theoretical explanation of the different types of deep learning techniques is followed by practical examples. You will learn how to implement different deep learning techniques using the TensorFlow Keras library for Python. Each chapter contains exercises that you can use to assess your understanding of the concepts explained in that chapter. Also, in the Resources, the Python notebook for each chapter is provided. The key advantage of buying this book is you get instant access to all the extra content presented with this book--Python codes, references, exercises, and PDFs--on the publisher's website. You don't need to spend an extra cent. The datasets used in this book are either downloaded at runtime or are available in the Resources/Datasets folder. Another advantage is a detailed explanation of the installation steps for the software that you will need to implement the various deep learning algorithms in this book is provided. That is, you get to experiment with the practical aspects of Deep Learning right from page 1. Even if you are new to Python, you will find the crash course on Python programming language in the first chapter immensely useful. Since all the codes and datasets are included with this book, you only need access to a computer with the internet to get started. The topics covered include: Python Crash Course Deep Learning Prerequisites: Linear and Logistic Regression Neural Networks from Scratch in Python Introduction to TensorFlow and Keras Convolutional Neural Networks Sequence Classification with Recurrent Neural Networks Deep Learning for Natural Language Processing Unsupervised Learning with Autoencoders Answers to All Exercises Click the BUY button and download the book now to start your Deep Learning journey.
Introduction To Machine Learning And Its Basic Application In Python
DOWNLOAD
Author : Pinky Sodhi
language : en
Publisher:
Release Date : 2019
Introduction To Machine Learning And Its Basic Application In Python written by Pinky Sodhi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Artificial Intelligence, Machine Learning and Deep Learning are the buzzwords that have been able to grasp the interest of many researchers since various numbers of years. Enabling computers to think, decide and act like humans has been one of the most significant and noteworthy developments in the field of computer science. Various algorithms have been designed over time to make machines impersonate the human brain and many programming languages have been used to implement those algorithms. Python is one such programming language that provides a rich library of modules and packages for use in scientific computing and machine learning. This paper aims at exploring the basic concepts related to machine learning and attempts to implement a few of its applications using python. This paper majorly used Scikit-Learn library of Python for implementing the applications developed for the purpose of research.
Intelligent Projects Using Python
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Intelligent Projects Using Python written by Santanu Pattanayak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.
Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key FeaturesA go-to guide to help you master AI algorithms and concepts8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillanceUse TensorFlow, Keras, and other Python libraries to implement smart AI applicationsBook Description This book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learnBuild an intelligent machine translation system using seq-2-seq neural translation machinesCreate AI applications using GAN and deploy smart mobile apps using TensorFlowTranslate videos into text using CNN and RNNImplement smart AI Chatbots, and integrate and extend them in several domainsCreate smart reinforcement, learning-based applications using Q-LearningBreak and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is for This book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book
Deep Learning With Python
DOWNLOAD
Author : Mike Krebbs
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-01-02
Deep Learning With Python written by Mike Krebbs and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-02 with categories.
***** Buy now (Will soon return to $47.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning From Scratch by using Python and TensorFlow? The overall aim of this book is to give you an application of deep learning techniques with python. Deep Learning is a type of artificial intelligence and machine learning that has become extremely important in the past few years. Deep Learning allows us to teach machines how to complete complex tasks without explicitly programming them to do so. As a result people with the ability to teach machines using deep learning are in extremely high demand. It is also leading to them getting huge increases in salaries. Deep Learning is revolutionizing the world around us and hence the need to understand and learn it becomes significant. In this book we shall cover what is deep learning, how you can get started with deep learning and what deep learning can do for you. By the end of this book you should be able to know what is deep learning and the tools technology and trends driving the artificial intelligence revolution. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images, which detail all-important deep learning concepts and their applications. This Is a Practical Guide Book This book will help you explore exactly the most important deep learning techniques by using python and real data. It is a step-by-step book. You will build our Deep Learning Models by using Python Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and machine learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Great Book? Introduction Deep Learning Techniques Applications Next Steps Practical Sentiment Analysis using TensorFlow with Neural Networks Performing Sequence Classification with RNNs Implementing Sequence Classification Using RNNs in TensorFlow Glossary of Some Useful Terms in Deep Learning Sources & References Bonus Chapter: Anaconda Setup & Python Crash Course Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: f you want to smash Data Science from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and further learning will be required beyond this book to master all aspects of data science. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. I will also be happy to help you if you send us an email at [email protected].
Deep Learning With Applications Using Python
DOWNLOAD
Author : Navin Kumar Manaswi
language : en
Publisher:
Release Date : 2018
Deep Learning With Applications Using Python written by Navin Kumar Manaswi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Machine learning categories.
Build deep learning applications, such as computer vision, speech recognition, and chatbots, using frameworks such as TensorFlow and Keras. This book helps you to ramp up your practical know-how in a short period of time and focuses you on the domain, models, and algorithms required for deep learning applications. Deep Learning with Applications Using Python covers topics such as chatbots, natural language processing, and face and object recognition. The goal is to equip you with the concepts, techniques, and algorithm implementations needed to create programs capable of performing deep learning. This book covers intermediate and advanced levels of deep learning, including convolutional neural networks, recurrent neural networks, and multilayer perceptrons. It also discusses popular APIs such as IBM Watson, Microsoft Azure, and scikit-learn. You will: Work with various deep learning frameworks such as TensorFlow, Keras, and scikit-learn. Build face recognition and face detection capabilities Create speech-to-text and text-to-speech functionality Make chatbots using deep learning.
Python Deep Learning
DOWNLOAD
Author : Ivan Vasilev
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-16
Python Deep Learning written by Ivan Vasilev and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-16 with Computers categories.
Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries Key Features Build a strong foundation in neural networks and deep learning with Python libraries Explore advanced deep learning techniques and their applications across computer vision and NLP Learn how a computer can navigate in complex environments with reinforcement learning Book DescriptionWith the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.What you will learn Grasp the mathematical theory behind neural networks and deep learning processes Investigate and resolve computer vision challenges using convolutional networks and capsule networks Solve generative tasks using variational autoencoders and Generative Adversarial Networks Implement complex NLP tasks using recurrent networks (LSTM and GRU) and attention models Explore reinforcement learning and understand how agents behave in a complex environment Get up to date with applications of deep learning in autonomous vehicles Who this book is for This book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book.
The The Deep Learning With Pytorch Workshop
DOWNLOAD
Author : Hyatt Saleh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-22
The The Deep Learning With Pytorch Workshop written by Hyatt Saleh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.
Get a head start in the world of AI and deep learning by developing your skills with PyTorch Key FeaturesLearn how to define your own network architecture in deep learningImplement helpful methods to create and train a model using PyTorch syntaxDiscover how intelligent applications using features like image recognition and speech recognition really process your dataBook Description Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you’re starting from scratch. It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures. The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues. By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps. What you will learnExplore the different applications of deep learningUnderstand the PyTorch approach to building neural networksCreate and train your very own perceptron using PyTorchSolve regression problems using artificial neural networks (ANNs)Handle computer vision problems with convolutional neural networks (CNNs)Perform language translation tasks using recurrent neural networks (RNNs)Who this book is for This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.