Download Data Science For Malware Analysis - eBooks (PDF)

Data Science For Malware Analysis


Data Science For Malware Analysis
DOWNLOAD

Download Data Science For Malware Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science For Malware Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Malware Data Science


Malware Data Science
DOWNLOAD
Author : Joshua Saxe
language : en
Publisher: No Starch Press
Release Date : 2018-09-25

Malware Data Science written by Joshua Saxe and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-25 with Computers categories.


Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.



Data Science For Malware Analysis


Data Science For Malware Analysis
DOWNLOAD
Author : Shane Molinari
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-12-15

Data Science For Malware Analysis written by Shane Molinari and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-15 with Computers categories.


Unlock the secrets of malware data science with cutting-edge techniques, AI-driven analysis, and international compliance standards to stay ahead of the ever-evolving cyber threat landscape Key Features Get introduced to three primary AI tactics used in malware and detection Leverage data science tools to combat critical cyber threats Understand regulatory requirements for using AI in cyber threat management Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's world full of online threats, the complexity of harmful software presents a significant challenge for detection and analysis. This insightful guide will teach you how to apply the principles of data science to online security, acting as both an educational resource and a practical manual for everyday use. Data Science for Malware Analysis starts by explaining the nuances of malware, from its lifecycle to its technological aspects before introducing you to the capabilities of data science in malware detection by leveraging machine learning, statistical analytics, and social network analysis. As you progress through the chapters, you’ll explore the analytical methods of reverse engineering, machine language, dynamic scrutiny, and behavioral assessments of malicious software. You’ll also develop an understanding of the evolving cybersecurity compliance landscape with regulations such as GDPR and CCPA, and gain insights into the global efforts in curbing cyber threats. By the end of this book, you’ll have a firm grasp on the modern malware lifecycle and how you can employ data science within cybersecurity to ward off new and evolving threats.What you will learn Understand the science behind malware data and its management lifecycle Explore anomaly detection with signature and heuristics-based methods Analyze data to uncover relationships between data points and create a network graph Discover methods for reverse engineering and analyzing malware Use ML, advanced analytics, and data mining in malware data analysis and detection Explore practical insights and the future state of AI's use for malware data science Understand how NLP AI employs algorithms to analyze text for malware detection Who this book is for This book is for cybersecurity experts keen on adopting data-driven defense methods. Data scientists will learn how to apply their skill set to address critical security issues, and compliance officers navigating global regulations like GDPR and CCPA will gain indispensable insights. Academic researchers exploring the intersection of data science and cybersecurity, IT decision-makers overseeing organizational strategy, and tech enthusiasts eager to understand modern cybersecurity will also find plenty of useful information in this guide. A basic understanding of cybersecurity and information technology is a prerequisite.



Secure Data Science


Secure Data Science
DOWNLOAD
Author : Bhavani Thuraisingham
language : en
Publisher: CRC Press
Release Date : 2022-04-27

Secure Data Science written by Bhavani Thuraisingham and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-27 with Computers categories.


Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science.



Malware Analysis Using Artificial Intelligence And Deep Learning


Malware Analysis Using Artificial Intelligence And Deep Learning
DOWNLOAD
Author : Mark Stamp
language : en
Publisher: Springer Nature
Release Date : 2020-12-20

Malware Analysis Using Artificial Intelligence And Deep Learning written by Mark Stamp and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-20 with Computers categories.


​This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis. The individual chapters of the book deal with a wide variety of state-of-the-art AI and DL techniques, which are applied to a number of challenging malware-related problems. DL and AI based approaches to malware detection and analysis are largely data driven and hence minimal expert domain knowledge of malware is needed. This book fills a gap between the emerging fields of DL/AI and malware analysis. It covers a broad range of modern and practical DL and AI techniques, including frameworks and development tools enabling the audience to innovate with cutting-edge research advancements in a multitude of malware (and closely related) use cases.



Machine Learning And Security


Machine Learning And Security
DOWNLOAD
Author : Clarence Chio
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-01-26

Machine Learning And Security written by Clarence Chio and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-26 with Computers categories.


Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions



Data Science For Cyber Security


Data Science For Cyber Security
DOWNLOAD
Author : Nicholas A Heard
language : en
Publisher: World Scientific
Release Date : 2018-09-26

Data Science For Cyber Security written by Nicholas A Heard and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-26 with Computers categories.


Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.



Machine Intelligence And Big Data Analytics For Cybersecurity Applications


Machine Intelligence And Big Data Analytics For Cybersecurity Applications
DOWNLOAD
Author : Yassine Maleh
language : en
Publisher: Springer Nature
Release Date : 2020-12-14

Machine Intelligence And Big Data Analytics For Cybersecurity Applications written by Yassine Maleh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.


This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.



Big Data Analytics With Applications In Insider Threat Detection


Big Data Analytics With Applications In Insider Threat Detection
DOWNLOAD
Author : Bhavani Thuraisingham
language : en
Publisher: CRC Press
Release Date : 2017-11-22

Big Data Analytics With Applications In Insider Threat Detection written by Bhavani Thuraisingham and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Computers categories.


Today's malware mutates randomly to avoid detection, but reactively adaptive malware is more intelligent, learning and adapting to new computer defenses on the fly. Using the same algorithms that antivirus software uses to detect viruses, reactively adaptive malware deploys those algorithms to outwit antivirus defenses and to go undetected. This book provides details of the tools, the types of malware the tools will detect, implementation of the tools in a cloud computing framework and the applications for insider threat detection.



Handbook Of Big Data Analytics And Forensics


Handbook Of Big Data Analytics And Forensics
DOWNLOAD
Author : Kim-Kwang Raymond Choo
language : en
Publisher: Springer Nature
Release Date : 2021-12-02

Handbook Of Big Data Analytics And Forensics written by Kim-Kwang Raymond Choo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-02 with Computers categories.


This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter. The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook also evaluates the performance of supervised machine learning methods in identifying cyberattacks against CPS. The performance of a scalable clustering algorithm for CPS’s cyber threat hunting and the usefulness of machine learning algorithms for MacOS malware detection are respectively evaluated. This handbook continues with evaluating the performance of various machine learning techniques to detect the Internet of Things malware. The authors demonstrate how MacOSX cyberattacks can be detected using state-of-the-art machine learning models. In order to identify credit card frauds, the fifteenth chapter introduces a hybrid model. In the sixteenth chapter, the editors propose a model that leverages natural language processing techniques for generating a mapping between APT-related reports and cyber kill chain. A deep learning-based approach to detect ransomware is introduced, as well as a proposed clustering approach to detect IoT malware in the last two chapters. This handbook primarily targets professionals and scientists working in Big Data, Digital Forensics, Machine Learning, Cyber Security Cyber Threat Analytics and Cyber Threat Hunting as a reference book. Advanced level-students and researchers studying and working in Computer systems, Computer networks and Artificial intelligence will also find this reference useful.



Machine Learning For Malware Detection


Machine Learning For Malware Detection
DOWNLOAD
Author : Taylor Royce
language : en
Publisher: Independently Published
Release Date : 2025-04-29

Machine Learning For Malware Detection written by Taylor Royce and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-29 with Computers categories.


Machine Learning for Malware Detection: Strategies, Models, and Applications Reactive defenses are no longer adequate as the cybersecurity environment gets more complicated and adversaries become more skilled. A state-of-the-art, professionally grounded investigation of how artificial intelligence, in particular machine learning, can be used to proactively identify, categorize, and react to malware threats in real-time is provided by Machine Learning for Malware Detection: Strategies, Models, and Applications. Data scientists, threat analysts, cybersecurity professionals, and technology executives who understand the critical need for intelligent, scalable defenses in today's digital infrastructure are the target audience for this book. It provides a thorough and useful road map for incorporating machine learning into contemporary malware detection processes while being mindful of the operational, moral, and legal issues that come with AI-powered systems. This book explores the entire lifecycle of intelligent malware detection, from data gathering and feature engineering to model evaluation, adversarial resilience, and ethical deployment, rather than concentrating only on algorithms or superficial trends. Every chapter is thoughtfully organized to provide practical insights derived from current research, real-world problems, and tried-and-true tactics. The following topics will be thoroughly understood by readers: The advantages and disadvantages of machine learning models in dynamic threat situations Methods for adversarial hardening and identifying malware that evades artificial intelligence; strategies for reducing false positives and preserving model reliability over time Strategic considerations for creating resilient, future-ready cyber defense ecosystems; the use of machine learning into larger threat intelligence and incident response frameworks This book stands out for its dedication to professionalism, depth, and clarity. In addition to being technically solid, the content is contextualized within the larger goals of safeguarding user privacy, defending digital assets, and facilitating the appropriate use of AI in security operations. In a time when machine learning may be used as a weapon and a shield, Machine Learning for Malware Detection: Strategies, Models, and Applications is more than just a technical handbook; it is a strategic manual for creating intelligent, robust, and moral cybersecurity systems.