Download Data Science Essentials For Dummies - eBooks (PDF)

Data Science Essentials For Dummies


Data Science Essentials For Dummies
DOWNLOAD

Download Data Science Essentials For Dummies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Science Essentials For Dummies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science Essentials For Dummies


Data Science Essentials For Dummies
DOWNLOAD
Author : Lillian Pierson
language : en
Publisher: John Wiley & Sons
Release Date : 2024-11-13

Data Science Essentials For Dummies written by Lillian Pierson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-13 with Computers categories.


Feel confident navigating the fundamentals of data science Data Science Essentials For Dummies is a quick reference on the core concepts of the exploding and in-demand data science field, which involves data collection and working on dataset cleaning, processing, and visualization. This direct and accessible resource helps you brush up on key topics and is right to the point—eliminating review material, wordy explanations, and fluff—so you get what you need, fast. Strengthen your understanding of data science basics Review what you've already learned or pick up key skills Effectively work with data and provide accessible materials to others Jog your memory on the essentials as you work and get clear answers to your questions Perfect for supplementing classroom learning, reviewing for a certification, or staying knowledgeable on the job, Data Science Essentials For Dummies is a reliable reference that's great to keep on hand as an everyday desk reference.



Statistics Essentials For Beginner In Data Science


Statistics Essentials For Beginner In Data Science
DOWNLOAD
Author : Jay Mishra
language : en
Publisher: AI Sciences LLC
Release Date : 2019-01-27

Statistics Essentials For Beginner In Data Science written by Jay Mishra and has been published by AI Sciences LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-27 with categories.


***** BUY NOW (will soon return to 24.95 $) *****Are you thinking of learning Statistics fundamentals for Data Science? If you are looking for a beginner book to master Statistics Learning fundamentals for Data Science, this book is for you. Who Should Read this Book?Aspiring data scientists who are looking forward to begin their journey in the vast field of data science. People who are seeking to learn and understand data analysis from its very deep-rooted basics have found the right book. Clear basic concepts make the foundation of a good knowledge base, which ultimately helps to gain sharp insights into this topic further. This book will give you the practical exposure along with its theory explained comprehensively. This book is the perfect compilation for beginners as well as intermediate learners who intend to learn statistics and data analysis techniques. Why this book?This book will guide you step by step from the very basics to how you can start your own data science project. The best part about this book is its structure, it's structured in such a way that integrates practicals along with its theory to make the concepts easily understandable. It will help you to understand a basic concept like mean, median, mode, scatter plot and histograms. Thus ensures no prior knowledge is required to start learning from this book. The content of this book is specially designed to encompass all the concepts that come under the domain of data science. This book will guide you through the problems and concepts of statistics. What is statistics?h2>Most of the people think statistics in data science is something different and more profound than what we learnt in our mathematics classes but it's not. It is the same concept of data collection followed by its organization, interpretation and presentation. Statistics is the key to develop a desired model in machine learning. Using statistics you can convert your raw meaningless chunk of data to a well-structured informative data. What's Inside This Book? Probability & Bayes Theorem, Data Exploration and Analysis Structured Data Estimates Mean and Median Estimates Variability Exploring the data distribution Percentiles and Boxplots Frequency table and Histograms Density Estimates Mode Correlation Categorical and Numeric Data Visualizing Multiple Variables Regression Analysis Clustering Analysis Statistical tests and ANOVA Classification Naïve Bayes Discriminant Analysis Linear regression Logistic Regression Statistical Machine Learning K_Nearest Neighbor Trees Models Bagging and Random Forest Boosting algorithms Principal Component Analysis K_means Clustering Hierarchical Clustering Model Based Clustering Sources & References From AI Sciences PublishingOur books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. Readers are advised to adopt a hands on approach, which would lead to better mental representations.Frequently Asked QuestionsQ: Does this book include everything I need to become a data analyst expert?A: Unfortunately, no. This book is designed for readers taking their first steps in statistics and data science and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform.***** MONEY BACK GUARANTEE BY AMAZON *****



Python Data Science Essentials


Python Data Science Essentials
DOWNLOAD
Author : MARK JOHN LADO
language : en
Publisher: Amazon Digital Services LLC - Kdp
Release Date : 2024-03-18

Python Data Science Essentials written by MARK JOHN LADO and has been published by Amazon Digital Services LLC - Kdp this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-18 with Computers categories.


The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.



Data Science For Beginners


Data Science For Beginners
DOWNLOAD
Author : Alex Campbell
language : en
Publisher:
Release Date : 2021-01-12

Data Science For Beginners written by Alex Campbell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-12 with categories.


Do you wonder what the fascination is around data these days? How do we obtain insights from this data? Do you know what a data scientist does? What is artificial intelligence and machine learning? Are these the same as data science? What does it take to become a data scientist? If you have ever wondered about these questions, you have come to the right place!There are many resources and courses online that you can use to learn more about data science, but with so much information available, it can become overwhelming. One of the best ways to learn about data science is to understand different machine learning concepts, statistics, and artificial intelligence to help you design models to perform an analysis.This book has all the information you need to learn what data science is, and what the prerequisites are to become a data scientist. If you're a beginner or if you already have experience in data science, this book will have something for you.In this book, you will: Learn what data science is about.Discover the difference between data science and business intelligence.Explore the tools required for data science.Find out the technical and non-technical skills every data scientist must have.Figure out how to create a visualization of the data set with clear and easy examples.Get advice on developing a Predictive Model Using R.Uncover detailed applications of data science.And much more!The book has been structured with easy-to-understand sections to help you learn everything you need to know about data science. In this book you will learn about the prerequisites of data science and the skills you need to become a data scientist. So, what are you waiting for? Grab your copy of this comprehensive guide now



Python Data Science Essentials


Python Data Science Essentials
DOWNLOAD
Author : Alberto Boschetti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-09-28

Python Data Science Essentials written by Alberto Boschetti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-28 with Computers categories.


Gain useful insights from your data using popular data science tools Key FeaturesA one-stop guide to Python libraries such as pandas and NumPyComprehensive coverage of data science operations such as data cleaning and data manipulationChoose scalable learning algorithms for your data science tasksBook Description Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users What you will learnSet up your data science toolbox on Windows, Mac, and LinuxUse the core machine learning methods offered by the scikit-learn libraryManipulate, fix, and explore data to solve data science problemsLearn advanced explorative and manipulative techniques to solve data operationsOptimize your machine learning models for optimized performanceExplore and cluster graphs, taking advantage of interconnections and links in your dataWho this book is for If you’re a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.



Python For Data Science For Dummies


Python For Data Science For Dummies
DOWNLOAD
Author : John Paul Mueller
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-29

Python For Data Science For Dummies written by John Paul Mueller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.


The fast and easy way to learn Python programming and statistics Python is a general-purpose programming language created in the late 1980s—and named after Monty Python—that's used by thousands of people to do things from testing microchips at Intel, to powering Instagram, to building video games with the PyGame library. Python For Data Science For Dummies is written for people who are new to data analysis, and discusses the basics of Python data analysis programming and statistics. The book also discusses Google Colab, which makes it possible to write Python code in the cloud. Get started with data science and Python Visualize information Wrangle data Learn from data The book provides the statistical background needed to get started in data science programming, including probability, random distributions, hypothesis testing, confidence intervals, and building regression models for prediction.



Machine Learning In Data Science Using Python


Machine Learning In Data Science Using Python
DOWNLOAD
Author : Dr. Ben Sujitha, Dr. G. Najeeb Ahmed, Dr. Napa Ram Chauhan, Dr. Rashmi Shekhar
language : en
Publisher: BR Publications
Release Date : 2025-12-31

Machine Learning In Data Science Using Python written by Dr. Ben Sujitha, Dr. G. Najeeb Ahmed, Dr. Napa Ram Chauhan, Dr. Rashmi Shekhar and has been published by BR Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-12-31 with Computers categories.


Machine Learning in Data Science Using Python focuses on applying intelligent algorithms to extract meaningful insights from large datasets. Python provides a powerful and flexible platform with libraries such as NumPy, Pandas, Matplotlib, and Scikit-learn for data analysis and model development. The subject covers data preprocessing, feature engineering, and exploratory data analysis. Machine learning techniques like regression, classification, clustering, and dimensionality reduction are used to identify patterns and make predictions. Model training and evaluation ensure accuracy and reliability. Visualization helps in understanding trends and relationships in data. Python enables rapid prototyping and scalable solutions. The integration of machine learning with data science supports decision-making across industries. Applications include healthcare, finance, marketing, and automation. Ethical data usage and model interpretability are emphasized. Overall, this field equips learners with practical skills to build data-driven intelligent systems and solve real-world problems effectively.



Python Data Science Essentials


Python Data Science Essentials
DOWNLOAD
Author : Alberto Boschetti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-10-28

Python Data Science Essentials written by Alberto Boschetti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-28 with Computers categories.


Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Peters Morgan
language : en
Publisher:
Release Date : 2017-04-07

Introduction To Data Science written by Peters Morgan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-07 with categories.


******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of learning data science with easiest way (For Beginners)? If you are looking for a complete introduction to data science, this book is for you.After his great success with his first book "Data Analysis from Scratch with Python", Peters Morgan publish this book focusing now in data science and machine learning. Practitioners consider it as the easiest guide ever written in this domain. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book is an introduction to the main concepts of data science explained with easiest examples. Peters Morgan focus on the practical aspects of using data science and machine learning algorithms, rather than the math behind them. Target Users Target UsersThe book is designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and data science Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Book? Introduction Statistics Probability Bayes' Theorem and Naïve Bayes Algorithm Asking the Right Question Data Acquisition Data Preparation Data Exploration Data Modelling Data Presentation Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and Underfitting Correctness The Bias-Variance Trade-off Feature Extraction and Selection K-Nearest Neighbors Naive Bayes Simple and Multiple Linear Regression Logistic Regression GLM models Decision Trees and Random forest Perceptrons Backpropagation Clustering Natural Language Processing Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: No programming experience is required. This book is an introduction to data science without any type of programming.Q: Does this book include everything I need to become a data science expert?A: Unfortunately, no. This book is designed for readers taking their first steps in data science and machine learning and further learning will be required beyond this book to master all aspects.Q: Can I loan this book to friends?A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected].



Data Science For Dummies


Data Science For Dummies
DOWNLOAD
Author : Lillian Pierson
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-15

Data Science For Dummies written by Lillian Pierson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Computers categories.


Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.