Download Data Mining With R - eBooks (PDF)

Data Mining With R


Data Mining With R
DOWNLOAD

Download Data Mining With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Mining With R


Data Mining With R
DOWNLOAD
Author : Luis Torgo
language : en
Publisher: CRC Press
Release Date : 2016-11-30

Data Mining With R written by Luis Torgo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-30 with Business & Economics categories.


Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.



R And Data Mining


R And Data Mining
DOWNLOAD
Author : Yanchang Zhao
language : en
Publisher: Academic Press
Release Date : 2012-12-31

R And Data Mining written by Yanchang Zhao and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-31 with Mathematics categories.


R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work



Learning Path


Learning Path
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2017

Learning Path written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


"Data mining is a growing demand on the market as the world is generating data at an increasing pace. R is a popular programming language for statistics. It can be used for day-to-day data analysis tasks. This Learning Path is the complete learning process for data-happy people. We begin with a thorough introduction to data mining and how R makes it easy with its many packages. We then move on to exploring data mining techniques, showing you how to apply different mining concepts to various statistical and data applications in a wide range of fields using R's vast set of algorithms. Discover the versatility of R for data mining with the collection of analysis techniques in this Learning Path."--Resource description page.



Data Mining With R


Data Mining With R
DOWNLOAD
Author : Luis Torgo
language : en
Publisher: Taylor & Francis
Release Date : 2011

Data Mining With R written by Luis Torgo and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with COMPUTERS categories.


The versatile capabilities and large set of add-on packages make R an excellent alternative to many existing and often expensive data mining tools. Exploring this area from the perspective of a practitioner, Data Mining with R: Learning with Case Studies uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, the book covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. To present the main data mining processes and techniques, the author takes a hands-on approach that utilizes a series of detailed, real-world case studies: Predicting algae blooms Predicting stock market returns Detecting fraudulent transactions Classifying microarray samples With these case studies, the author supplies all necessary steps, code, and data. Web ResourceA supporting website mirrors the do-it-yourself approach of the text. It offers a collection of freely available R source files that encompass all the code used in the case studies. The site also provides the data sets from the case studies as well as an R package of several functions.



Data Mining Applications With R


Data Mining Applications With R
DOWNLOAD
Author : Yanchang Zhao
language : en
Publisher: Academic Press
Release Date : 2013-11-26

Data Mining Applications With R written by Yanchang Zhao and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-26 with Computers categories.


Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves



Data Mining For Business Analytics


Data Mining For Business Analytics
DOWNLOAD
Author : Galit Shmueli
language : en
Publisher: John Wiley & Sons
Release Date : 2016-05-09

Data Mining For Business Analytics written by Galit Shmueli and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-09 with Mathematics categories.


Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field.



Business Analytics Using R A Practical Approach


Business Analytics Using R A Practical Approach
DOWNLOAD
Author : Umesh R Hodeghatta
language : en
Publisher: Apress
Release Date : 2016-12-27

Business Analytics Using R A Practical Approach written by Umesh R Hodeghatta and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-27 with Computers categories.


Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictiveanalytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.



Data Mining And Business Analytics With R


Data Mining And Business Analytics With R
DOWNLOAD
Author : Johannes Ledolter
language : en
Publisher: John Wiley & Sons
Release Date : 2013-05-28

Data Mining And Business Analytics With R written by Johannes Ledolter and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-28 with Mathematics categories.


Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.



Educational Data Mining With R And Rattle


Educational Data Mining With R And Rattle
DOWNLOAD
Author : R.S. Kamath
language : en
Publisher: CRC Press
Release Date : 2022-09-01

Educational Data Mining With R And Rattle written by R.S. Kamath and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Science categories.


Educational Data Mining (EDM) is one of the emerging fields in the pedagogy and andragogy paradigm, it concerns the techniques which research data coming from the educational domain. EDM is a promising discipline which has an imperative impact on predicting students' academic performance. It includes the transformation of existing, and the innovation of new approaches derived from multidisciplinary spheres of influence such as statistics, machine learning, psychometrics, scientific computing etc.An archetype that is covered in this book is that of learning by example. The intention is that reader will easily be able to replicate the given examples and then adapt them to suit their own needs of teaching-learning. The content of the book is based on the research work undertaken by the authors on the theme "Mining of Educational Data for the Analysis and Prediction of Students' Academic Performance". The basic know-how presented in this book can be treated as guide for educational data mining implementation using R and Rattle open source data mining tools. .Technical topics discussed in the book include:• Emerging Research Directions in Educational Data Mining• Design Aspects and Developmental Framework of the System• Model Development - Building Classifiers• Educational Data Analysis: Clustering Approach



R Data Mining


R Data Mining
DOWNLOAD
Author : Andrea Cirillo
language : en
Publisher:
Release Date : 2017-11-28

R Data Mining written by Andrea Cirillo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-28 with categories.


Mine valuable insights from your data using popular tools and techniques in RAbout This Book* Understand the basics of data mining and why R is a perfect tool for it.* Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it.* Apply effective data mining models to perform regression and classification tasks.Who This Book Is ForIf you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required.What You Will Learn* Master relevant packages such as dplyr, ggplot2 and so on for data mining* Learn how to effectively organize a data mining project through the CRISP-DM methodology* Implement data cleaning and validation tasks to get your data ready for data mining activities* Execute Exploratory Data Analysis both the numerical and the graphical way* Develop simple and multiple regression models along with logistic regression* Apply basic ensemble learning techniques to join together results from different data mining models* Perform text mining analysis from unstructured pdf files and textual data* Produce reports to effectively communicate objectives, methods, and insights of your analysesIn DetailR is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting and implementing the appropriate data mining techniques in R.It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques.While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data.Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets.Style and approachThis book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.