Download Data Analytics And Machine Learning - eBooks (PDF)

Data Analytics And Machine Learning


Data Analytics And Machine Learning
DOWNLOAD

Download Data Analytics And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Practical Big Data Analytics


Practical Big Data Analytics
DOWNLOAD
Author : Nataraj Dasgupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-15

Practical Big Data Analytics written by Nataraj Dasgupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-15 with Computers categories.


Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.



Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition


Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2020-10-20

Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-20 with Computers categories.


The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.



Deep Learning In Data Analytics


Deep Learning In Data Analytics
DOWNLOAD
Author : Debi Prasanna Acharjya
language : en
Publisher: Springer
Release Date : 2021-09-21

Deep Learning In Data Analytics written by Debi Prasanna Acharjya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-21 with Technology & Engineering categories.


This book comprises theoretical foundations to deep learning, machine learning and computing system, deep learning algorithms, and various deep learning applications. The book discusses significant issues relating to deep learning in data analytics. Further in-depth reading can be done from the detailed bibliography presented at the end of each chapter. Besides, this book's material includes concepts, algorithms, figures, graphs, and tables in guiding researchers through deep learning in data science and its applications for society. Deep learning approaches prevent loss of information and hence enhance the performance of data analysis and learning techniques. It brings up many research issues in the industry and research community to capture and access data effectively. The book provides the conceptual basis of deep learning required to achieve in-depth knowledge in computer and data science. It has been done to make the book more flexible and to stimulate further interest in topics. All these help researchers motivate towards learning and implementing the concepts in real-life applications.



Applications Of Machine Learning In Big Data Analytics And Cloud Computing


Applications Of Machine Learning In Big Data Analytics And Cloud Computing
DOWNLOAD
Author : Subhendu Kumar Pani
language : en
Publisher: CRC Press
Release Date : 2022-09-01

Applications Of Machine Learning In Big Data Analytics And Cloud Computing written by Subhendu Kumar Pani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Computers categories.


Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.



Big Data Analytics For Cyber Physical Systems


Big Data Analytics For Cyber Physical Systems
DOWNLOAD
Author : Guido Dartmann
language : en
Publisher: Elsevier
Release Date : 2019-07-15

Big Data Analytics For Cyber Physical Systems written by Guido Dartmann and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-15 with Law categories.


Big Data Analytics in Cyber-Physical Systems: Machine Learning for the Internet of Things examines sensor signal processing, IoT gateways, optimization and decision-making, intelligent mobility, and implementation of machine learning algorithms in embedded systems. This book focuses on the interaction between IoT technology and the mathematical tools used to evaluate the extracted data of those systems. Each chapter provides the reader with a broad list of data analytics and machine learning methods for multiple IoT applications. Additionally, this volume addresses the educational transfer needed to incorporate these technologies into our society by examining new platforms for IoT in schools, new courses and concepts for universities and adult education on IoT and data science. - Bridges the gap between IoT, CPS, and mathematical modelling - Features numerous use cases that discuss how concepts are applied in different domains and applications - Provides "best practices", "winning stories" and "real-world examples" to complement innovation - Includes highlights of mathematical foundations of signal processing and machine learning in CPS and IoT



Machine Learning And Data Science


Machine Learning And Data Science
DOWNLOAD
Author : Prateek Agrawal
language : en
Publisher: John Wiley & Sons
Release Date : 2022-08-09

Machine Learning And Data Science written by Prateek Agrawal and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-09 with Computers categories.


MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.



Data Analytics And Learning


Data Analytics And Learning
DOWNLOAD
Author : P. Nagabhushan
language : en
Publisher: Springer
Release Date : 2018-11-04

Data Analytics And Learning written by P. Nagabhushan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-04 with Technology & Engineering categories.


This book presents new theories and working models in the area of data analytics and learning. The papers included in this volume were presented at the first International Conference on Data Analytics and Learning (DAL 2018), which was hosted by the Department of Studies in Computer Science, University of Mysore, India on 30–31 March 2018. The areas covered include pattern recognition, image processing, deep learning, computer vision, data analytics, machine learning, artificial intelligence, and intelligent systems. As such, the book offers a valuable resource for researchers and practitioners alike.



Advanced Data Analytics Using Python


Advanced Data Analytics Using Python
DOWNLOAD
Author : Sayan Mukhopadhyay
language : en
Publisher: Apress
Release Date : 2018-03-29

Advanced Data Analytics Using Python written by Sayan Mukhopadhyay and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-29 with Computers categories.


Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.



Feature Engineering For Machine Learning And Data Analytics


Feature Engineering For Machine Learning And Data Analytics
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: CRC Press
Release Date : 2018-03-14

Feature Engineering For Machine Learning And Data Analytics written by Guozhu Dong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-14 with Business & Economics categories.


Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.



Handbook Of Research On Disease Prediction Through Data Analytics And Machine Learning


Handbook Of Research On Disease Prediction Through Data Analytics And Machine Learning
DOWNLOAD
Author : Rani, Geeta
language : en
Publisher: IGI Global
Release Date : 2020-10-16

Handbook Of Research On Disease Prediction Through Data Analytics And Machine Learning written by Rani, Geeta and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Medical categories.


By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.