Download Data Analysis - eBooks (PDF)

Data Analysis


Data Analysis
DOWNLOAD

Download Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Analysis


Data Analysis
DOWNLOAD
Author : Michael Lewis-Beck
language : en
Publisher: SAGE Publications
Release Date : 1995-01-17

Data Analysis written by Michael Lewis-Beck and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-01-17 with Social Science categories.


Written at a level appropriate for the advanced undergraduate course on data analysis, this accessible volume introduces the reader to the "art" of data analysis from data-gathering to multiple regression in which a dependent variable is influenced by several independent variables. The book focuses on the interpretation of a statistical result, in particular those that come from non-experimental social research. Using a consistent data set throughout the book in order to illustrate the various analytic techniques, the author covers such topics as univariate statistics, measures of association, the statistical significance of the relationship between two variables, and simple regression where the dependent variable is influenced by a single independent variable. The last chapter offers analysis recommendations. Data Analysis will provide social science researchers with the tools to select and evaluate statistical tests appropriate for their particular research question.



Handbook Of Data Analysis


Handbook Of Data Analysis
DOWNLOAD
Author : Melissa A Hardy
language : en
Publisher: SAGE
Release Date : 2004-04-21

Handbook Of Data Analysis written by Melissa A Hardy and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-21 with Social Science categories.


This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond. Diagrams and tables are used effectively throughout the text and snippets of sample code provide useful additions to chapters for those of us who are less familiar with statistical software packages. Where equations are used to they are explained and documented with careful explanation of statistical notation. Each of the chapters in the book references a representative range of key authors and seminal texts, making it an ideal springboard for further and more advanced reading... the book provides an excellent reference of quantitative methodology and would provide a very useful addition to the shelves of researches and university libraries. - Environment and Planning This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. However, the book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis. `The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University `With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. While quantitative methods are treated, from basic statistics through the general linear model and beyond, qualitative methods are by no means neglected. Indeed, a unique feature of this volume is the careful integration of quantitative and qualitative approaches. Undoubtedly, this integration succeeds because of the research strengths of the editors, leading social researchers who themselves employ both quantitative and qualitative methods′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa and Editor of the SAGE `Quantitative Applications in the Social Sciences′ series `This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey



The Data Analysis Handbook


The Data Analysis Handbook
DOWNLOAD
Author : I.E. Frank
language : en
Publisher: Elsevier
Release Date : 1994-09-30

The Data Analysis Handbook written by I.E. Frank and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-09-30 with Education categories.


Analyzing observed or measured data is an important step in applied sciences. The recent increase in computer capacity has resulted in a revolution both in data collection and data analysis. An increasing number of scientists, researchers and students are venturing into statistical data analysis; hence the need for more guidance in this field, which was previously dominated mainly by statisticians.This handbook fills the gap in the range of textbooks on data analysis. Written in a dictionary format, it will serve as a comprehensive reference book in a rapidly growing field. However, this book is more structured than an ordinary dictionary, where each entry is a separate, self-contained entity. The authors provide not only definitions and short descriptions, but also offer an overview of the different topics. Therefore, the handbook can also be used as a companion to textbooks for undergraduate or graduate courses.1700 entries are given in alphabetical order grouped into 20 topics and each topic is organized in a hierarchical fashion. Additional specific entries on a topic can be easily found by following the cross-references in a top-down manner. Several figures and tables are provided to enhance the comprehension of the topics and a list of acronyms helps to locate the full terminologies. The bibliography offers suggestions for further reading.



Data Analysis


Data Analysis
DOWNLOAD
Author : Gérard Govaert
language : en
Publisher: John Wiley & Sons
Release Date : 2013-03-04

Data Analysis written by Gérard Govaert and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-04 with Mathematics categories.


The first part of this book is devoted to methods seeking relevant dimensions of data. The variables thus obtained provide a synthetic description which often results in a graphical representation of the data. After a general presentation of the discriminating analysis, the second part is devoted to clustering methods which constitute another method, often complementary to the methods described in the first part, to synthesize and to analyze the data. The book concludes by examining the links existing between data mining and data analysis.



Data Analysis


Data Analysis
DOWNLOAD
Author : Charles M. Judd
language : en
Publisher: Routledge
Release Date : 2011-03-15

Data Analysis written by Charles M. Judd and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-15 with Education categories.


This completely rewritten classic text features many new examples, insights and topics including mediational, categorical, and multilevel models. Substantially reorganized, this edition provides a briefer, more streamlined examination of data analysis. Noted for its model-comparison approach and unified framework based on the general linear model, the book provides readers with a greater understanding of a variety of statistical procedures. This consistent framework, including consistent vocabulary and notation, is used throughout to develop fewer but more powerful model building techniques. The authors show how all analysis of variance and multiple regression can be accomplished within this framework. The model-comparison approach provides several benefits: It strengthens the intuitive understanding of the material thereby increasing the ability to successfully analyze data in the future It provides more control in the analysis of data so that readers can apply the techniques to a broader spectrum of questions It reduces the number of statistical techniques that must be memorized It teaches readers how to become data analysts instead of statisticians. The book opens with an overview of data analysis. All the necessary concepts for statistical inference used throughout the book are introduced in Chapters 2 through 4. The remainder of the book builds on these models. Chapters 5 - 7 focus on regression analysis, followed by analysis of variance (ANOVA), mediational analyses, non-independent or correlated errors, including multilevel modeling, and outliers and error violations. The book is appreciated by all for its detailed treatment of ANOVA, multiple regression, nonindependent observations, interactive and nonlinear models of data, and its guidance for treating outliers and other problematic aspects of data analysis. Intended for advanced undergraduate or graduate courses on data analysis, statistics, and/or quantitative methods taught in psychology, education, or other behavioral and social science departments, this book also appeals to researchers who analyze data. A protected website featuring additional examples and problems with data sets, lecture notes, PowerPoint presentations, and class-tested exam questions is available to adopters. This material uses SAS but can easily be adapted to other programs. A working knowledge of basic algebra and any multiple regression program is assumed.



Guide To Intelligent Data Analysis


Guide To Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-23

Guide To Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-23 with Computers categories.


Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examplesto support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.



Data Analysis


Data Analysis
DOWNLOAD
Author : BISHNU, PARTHA SARATHI
language : en
Publisher: PHI Learning Pvt. Ltd.
Release Date :

Data Analysis written by BISHNU, PARTHA SARATHI and has been published by PHI Learning Pvt. Ltd. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Data Analysis Using Statistics and Probability with R Language is a complete introduction to data analysis. It provides a sound understanding of the foundations of the data analysis, in addition to covering many important advanced topics. Moreover, all the techniques have been implemented using R language as well as Excel. This book is intended for the undergraduate and postgraduate students of Management and Engineering disciplines. It is also useful for research scholars. KEY FEATURES 1. Covers data analysis topics such as: • Descriptive statistics like mean, median, mode, standard deviation, skewness, kurtosis, correlation and regression • Probability and probability distribution • Inferential statistics like estimation of parameters, hypothesis testing, ANOVA test, chi-square and t-test • Statistical quality control, time series analysis, statistical decision theory • Explorative data analysis like clustering and classification • Advanced techniques like conjoint analysis, panel data analysis, and logistic regression analysis 2. Comprises 12 chapters which include examples, solved problems, review questions and unsolved problems. 3. Requires no programming background and can be used to understand theoretical concepts also by skipping programming. 4. R and Excel implementations, and additional advanced topics are available at https://phindia.com/partha_sarathi_ bishnu_ and_vandana_bhattacherjee 5. Whenever in any branch, data analysis technique is required, this book is the best. TARGET AUDIENCE • Students of MBA, ME/M.Tech, and BE/B.Tech. • M.Sc. (Computer Science), MCA, BCA, and research scholars



Intelligent Data Analysis


Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2007-06-07

Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-07 with Computers categories.


This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.



A General Introduction To Data Analytics


A General Introduction To Data Analytics
DOWNLOAD
Author : João Moreira
language : en
Publisher: John Wiley & Sons
Release Date : 2018-07-02

A General Introduction To Data Analytics written by João Moreira and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-02 with Mathematics categories.


A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.



Multi And Megavariate Data Analysis Basic Principles And Applications


Multi And Megavariate Data Analysis Basic Principles And Applications
DOWNLOAD
Author : L. Eriksson
language : en
Publisher: Umetrics Academy
Release Date : 2013-07-01

Multi And Megavariate Data Analysis Basic Principles And Applications written by L. Eriksson and has been published by Umetrics Academy this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-01 with Mathematics categories.


To understand the world around us, as well as ourselves, we need to measure many things, many variables, many properties of the systems and processes we investigate. Hence, data collected in science, technology, and almost everywhere else are multivariate, a data table with multiple variables measured on multiple observations (cases, samples, items, process time points, experiments). This book describes a remarkably simple minimalistic and practical approach to the analysis of data tables (multivariate data). The approach is based on projection methods, which are PCA (principal components analysis), and PLS (projection to latent structures) and the book shows how this works in science and technology for a wide variety of applications. In particular, it is shown how the great information content in well collected multivariate data can be expressed in terms of simple but illuminating plots, facilitating the understanding and interpretation of the data. The projection approach applies to a variety of data-analytical objectives, i.e., (i) summarizing and visualizing a data set, (ii) multivariate classification and discriminant analysis, and (iii) finding quantitative relationships among the variables. This works with any shape of data table, with many or few variables (columns), many or few observations (rows), and complete or incomplete data tables (missing data). In particular, projections handle data matrices with more variables than observations very well, and the data can be noisy and highly collinear. Authors: The five authors are all connected to the Umetrics company (www.umetrics.com) which has developed and sold software for multivariate analysis since 1987, as well as supports customers with training and consultations. Umetrics' customers include most large and medium sized companies in the pharmaceutical, biopharm, chemical, and semiconductor sectors.