Download Cyber Security And Adversarial Machine Learning - eBooks (PDF)

Cyber Security And Adversarial Machine Learning


Cyber Security And Adversarial Machine Learning
DOWNLOAD

Download Cyber Security And Adversarial Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cyber Security And Adversarial Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Cyber Security And Adversarial Machine Learning


Cyber Security And Adversarial Machine Learning
DOWNLOAD
Author : Ferhat Ozgur Catak
language : en
Publisher:
Release Date : 2021-10-30

Cyber Security And Adversarial Machine Learning written by Ferhat Ozgur Catak and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-30 with categories.


Focuses on learning vulnerabilities and cyber security. The book gives detail on the new threats and mitigation methods in the cyber security domain, and provides information on the new threats in new technologies such as vulnerabilities in deep learning, data privacy problems with GDPR, and new solutions.



Game Theory And Machine Learning For Cyber Security


Game Theory And Machine Learning For Cyber Security
DOWNLOAD
Author : Charles A. Kamhoua
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-15

Game Theory And Machine Learning For Cyber Security written by Charles A. Kamhoua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Technology & Engineering categories.


GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.



Cyber Security Meets Machine Learning


Cyber Security Meets Machine Learning
DOWNLOAD
Author : Xiaofeng Chen
language : en
Publisher: Springer Nature
Release Date : 2021-07-02

Cyber Security Meets Machine Learning written by Xiaofeng Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-02 with Computers categories.


Machine learning boosts the capabilities of security solutions in the modern cyber environment. However, there are also security concerns associated with machine learning models and approaches: the vulnerability of machine learning models to adversarial attacks is a fatal flaw in the artificial intelligence technologies, and the privacy of the data used in the training and testing periods is also causing increasing concern among users. This book reviews the latest research in the area, including effective applications of machine learning methods in cybersecurity solutions and the urgent security risks related to the machine learning models. The book is divided into three parts: Cyber Security Based on Machine Learning; Security in Machine Learning Methods and Systems; and Security and Privacy in Outsourced Machine Learning. Addressing hot topics in cybersecurity and written by leading researchers in the field, the book features self-contained chapters to allow readers to select topics that are relevant to their needs. It is a valuable resource for all those interested in cybersecurity and robust machine learning, including graduate students and academic and industrial researchers, wanting to gain insights into cutting-edge research topics, as well as related tools and inspiring innovations.



Adversarial Machine Learning


Adversarial Machine Learning
DOWNLOAD
Author : Aneesh Sreevallabh Chivukula
language : en
Publisher: Springer Nature
Release Date : 2023-03-06

Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-06 with Computers categories.


A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.



Ai Machine Learning And Deep Learning


Ai Machine Learning And Deep Learning
DOWNLOAD
Author : Fei Hu
language : en
Publisher: CRC Press
Release Date : 2023-06-05

Ai Machine Learning And Deep Learning written by Fei Hu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.


Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on security issues in AI/ML/DL-based systems (i.e., securing the intelligent systems themselves), AI/ML/DL models and algorithms can actually also be used for cyber security (i.e., the use of AI to achieve security). Since AI/ML/DL security is a newly emergent field, many researchers and industry professionals cannot yet obtain a detailed, comprehensive understanding of this area. This book aims to provide a complete picture of the challenges and solutions to related security issues in various applications. It explains how different attacks can occur in advanced AI tools and the challenges of overcoming those attacks. Then, the book describes many sets of promising solutions to achieve AI security and privacy. The features of this book have seven aspects: This is the first book to explain various practical attacks and countermeasures to AI systems Both quantitative math models and practical security implementations are provided It covers both "securing the AI system itself" and "using AI to achieve security" It covers all the advanced AI attacks and threats with detailed attack models It provides multiple solution spaces to the security and privacy issues in AI tools The differences among ML and DL security and privacy issues are explained Many practical security applications are covered



Adversary Aware Learning Techniques And Trends In Cybersecurity


Adversary Aware Learning Techniques And Trends In Cybersecurity
DOWNLOAD
Author : Prithviraj Dasgupta
language : en
Publisher: Springer Nature
Release Date : 2021-01-22

Adversary Aware Learning Techniques And Trends In Cybersecurity written by Prithviraj Dasgupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-22 with Computers categories.


This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.



Challenges And Solutions For Cybersecurity And Adversarial Machine Learning


Challenges And Solutions For Cybersecurity And Adversarial Machine Learning
DOWNLOAD
Author : Ul Rehman, Shafiq
language : en
Publisher: IGI Global
Release Date : 2025-06-06

Challenges And Solutions For Cybersecurity And Adversarial Machine Learning written by Ul Rehman, Shafiq and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-06 with Computers categories.


Adversarial machine learning poses a threat to cybersecurity by exploiting vulnerabilities in AI models through manipulated inputs. These attacks can cause systems in healthcare, finance, and autonomous vehicles to make dangerous or misleading decisions. A major challenge lies in detecting these small issues and defending learning models and organizational data without sacrificing performance. Ongoing research and cross-sector collaboration are essential to develop robust, ethical, and secure machine learning systems. Further research may reveal better solutions to converge cyber technology, security, and machine learning tools. Challenges and Solutions for Cybersecurity and Adversarial Machine Learning explores adversarial machine learning and deep learning within cybersecurity. It examines foundational knowledge, highlights vulnerabilities and threats, and proposes cutting-edge solutions to counteract adversarial attacks on AI systems. This book covers topics such as data privacy, federated learning, and threat detection, and is a useful resource for business owners, computer engineers, security professionals, academicians, researchers, and data scientists.



Machine Learning For Cyber Security


Machine Learning For Cyber Security
DOWNLOAD
Author : Xiaofeng Chen
language : en
Publisher: Springer Nature
Release Date : 2020-11-10

Machine Learning For Cyber Security written by Xiaofeng Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-10 with Computers categories.


This three volume book set constitutes the proceedings of the Third International Conference on Machine Learning for Cyber Security, ML4CS 2020, held in Xi’an, China in October 2020. The 118 full papers and 40 short papers presented were carefully reviewed and selected from 360 submissions. The papers offer a wide range of the following subjects: Machine learning, security, privacy-preserving, cyber security, Adversarial machine Learning, Malware detection and analysis, Data mining, and Artificial Intelligence.



Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies


Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2019-08-22

Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-22 with Computers categories.


The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.



Adversarial Example Detection And Mitigation Using Machine Learning


Adversarial Example Detection And Mitigation Using Machine Learning
DOWNLOAD
Author : Ehsan Nowroozi
language : en
Publisher: Springer
Release Date : 2025-10-06

Adversarial Example Detection And Mitigation Using Machine Learning written by Ehsan Nowroozi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-06 with Computers categories.


This book offers a comprehensive exploration of the emerging threats and defense strategies in adversarial machine learning and AI security. It covers a broad range of topics, from federated learning attacks, adversarial defenses, biometric vulnerabilities, and security weaknesses in generative AI to quantum threats and ethical considerations. It also brings together leading researchers to provide an in-depth and multifaceted perspective. As artificial intelligence systems become increasingly integrated into critical sectors such as healthcare, finance, transportation, and national security, understanding and mitigating adversarial risks has never been more crucial. Each chapter delivers not only a detailed analysis of current challenges, but it also includes insights into practical mitigation techniques, future trends, and real-world applications. This book is intended for researchers and graduate students working in machine learning, cybersecurity, and related disciplines. Security professionals will also find this book to be a valuable reference for understanding the latest advancements, defending against sophisticated adversarial threats, and contributing to the development of more robust, trustworthy AI systems. By bridging theoretical foundations with practical applications, this book serves as both a scholarly reference and a catalyst for innovation in the rapidly evolving field of AI security.