Causal Data Science With Python
DOWNLOAD
Download Causal Data Science With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Causal Data Science With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Causal Data Science With Python
DOWNLOAD
Author : Dorcas O Folarin
language : en
Publisher: Independently Published
Release Date : 2025-10-12
Causal Data Science With Python written by Dorcas O Folarin and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-12 with Mathematics categories.
In the age of big data, correlation is everywhere - but causation is what truly drives understanding and decision-making. Causal Data Science with Python: From Correlation to Decision bridges the gap between predictive modeling and causal reasoning, offering a practical, hands-on guide to uncovering cause-and-effect relationships in data. This book introduces the principles of causal inference and their implementation in Python, combining the rigor of statistics with the flexibility of modern machine learning. Through real-world examples and step-by-step coding exercises, readers learn to move beyond simple associations and make robust causal claims that support confident decisions in business, healthcare, economics, and the social sciences. Key topics include counterfactual reasoning, randomized experiments, propensity score methods, instrumental variables, causal graphs (DAGs), mediation analysis, and machine learning for causal effect estimation. The text balances theory and practice, providing clear explanations of concepts such as the Rubin Causal Model, do-calculus, and Structural Causal Models (SCMs) - alongside Python implementations using libraries such as DoWhy, EconML, CausalML, and PyMC. Whether you are a data scientist seeking to build fairer AI systems, a social scientist analyzing interventions, or a policymaker looking for evidence-based insights, this book offers the tools and reasoning framework to transform data into meaningful, actionable understanding.
Data Science The Hard Parts
DOWNLOAD
Author : Daniel Vaughan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-11-01
Data Science The Hard Parts written by Daniel Vaughan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-01 with Computers categories.
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline—machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one. Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries. With this book, you will: Understand how data science creates value Deliver compelling narratives to sell your data science project Build a business case using unit economics principles Create new features for a ML model using storytelling Learn how to decompose KPIs Perform growth decompositions to find root causes for changes in a metric Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).
Causal Ai
DOWNLOAD
Author : Robert Osazuwa Ness
language : en
Publisher: Simon and Schuster
Release Date : 2025-03-18
Causal Ai written by Robert Osazuwa Ness and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-18 with Computers categories.
Causal AI is a practical introduction to building AI models that can reason about causality. Robert Ness' clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.
Cause And Effect Business Analytics And Data Science
DOWNLOAD
Author : Dominique Haughton
language : en
Publisher: CRC Press
Release Date : 2025-07-15
Cause And Effect Business Analytics And Data Science written by Dominique Haughton and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-15 with Business & Economics categories.
Among the most important questions that businesses ask are some very simple ones: If I decide to do something, will it work? And if so, how large are the effects? To answer these predictive questions, and later base decisions on them, we need to establish causal relationships. Establishing and measuring causality can be difficult. This book explains the most useful techniques for discerning causality and illustrates the principles with numerous examples from business. It discusses randomized experiments (aka A/B testing) and techniques such as propensity score matching, synthetic controls, double differences, and instrumental variables. There is a chapter on the powerful AI approach of Directed Acyclic Graphs (aka Bayesian Networks), another on structural equation models, and one on time-series techniques, including Granger causality. At the heart of the book are four chapters on uplift modeling, where the goal is to help firms determine how best to deploy their resources for marketing or other interventions. We start by modeling uplift, discuss the test-and-learn process, and provide an overview of the prescriptive analytics of uplift. The book is written in an accessible style and will be of interest to data analysts and strategists in business, to students and instructors of business and analytics who have a solid foundation in statistics, and to data scientists who recognize the need to take seriously the need for causality as an essential input into effective decision-making.
Computing Internet Of Things And Data Analytics
DOWNLOAD
Author : Fausto Pedro García Márquez
language : en
Publisher: Springer Nature
Release Date : 2024-02-22
Computing Internet Of Things And Data Analytics written by Fausto Pedro García Márquez and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-22 with Mathematics categories.
This book covers selected papers presented at the 2nd International Conference on Computing, IoT and Data Analytics (ICCIDA) in 2022 organized by Universidad de Castilla - La Mancha, Spain, August 11-12, 2023. It highlights some of the latest research advances and cutting-edge analyses of real-world problems related to Computing, IoT and Data Analytics and their applications in various domains. This includes state of the art models and methods used on benchmark datasets.
A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02
A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Data Science For Transport
DOWNLOAD
Author : Charles Fox
language : en
Publisher: Springer
Release Date : 2018-02-27
Data Science For Transport written by Charles Fox and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-27 with Political Science categories.
The quantity, diversity and availability of transport data is increasing rapidly, requiring new skills in the management and interrogation of data and databases. Recent years have seen a new wave of 'big data', 'Data Science', and 'smart cities' changing the world, with the Harvard Business Review describing Data Science as the "sexiest job of the 21st century". Transportation professionals and researchers need to be able to use data and databases in order to establish quantitative, empirical facts, and to validate and challenge their mathematical models, whose axioms have traditionally often been assumed rather than rigorously tested against data. This book takes a highly practical approach to learning about Data Science tools and their application to investigating transport issues. The focus is principally on practical, professional work with real data and tools, including business and ethical issues. "Transport modeling practice was developed in a data poor world, and many of our current techniques and skills are building on that sparsity. In a new data rich world, the required tools are different and the ethical questions around data and privacy are definitely different. I am not sure whether current professionals have these skills; and I am certainly not convinced that our current transport modeling tools will survive in a data rich environment. This is an exciting time to be a data scientist in the transport field. We are trying to get to grips with the opportunities that big data sources offer; but at the same time such data skills need to be fused with an understanding of transport, and of transport modeling. Those with these combined skills can be instrumental at providing better, faster, cheaper data for transport decision- making; and ultimately contribute to innovative, efficient, data driven modeling techniques of the future. It is not surprising that this course, this book, has been authored by the Institute for Transport Studies. To do this well, you need a blend of academic rigor and practical pragmatism. There are few educational or research establishments better equipped to do that than ITS Leeds". - Tom van Vuren, Divisional Director, Mott MacDonald "WSP is proud to be a thought leader in the world of transport modelling, planning and economics, and has a wide range of opportunities for people with skills in these areas. The evidence base and forecasts we deliver to effectively implement strategies and schemes are ever more data and technology focused a trend we have helped shape since the 1970's, but with particular disruption and opportunity in recent years. As a result of these trends, and to suitably skill the next generation of transport modellers, we asked the world-leading Institute for Transport Studies, to boost skills in these areas, and they have responded with a new MSc programme which you too can now study via this book." - Leighton Cardwell, Technical Director, WSP. "From processing and analysing large datasets, to automation of modelling tasks sometimes requiring different software packages to "talk" to each other, to data visualization, SYSTRA employs a range of techniques and tools to provide our clients with deeper insights and effective solutions. This book does an excellent job in giving you the skills to manage, interrogate and analyse databases, and develop powerful presentations. Another important publication from ITS Leeds." - Fitsum Teklu, Associate Director (Modelling & Appraisal) SYSTRA Ltd "Urban planning has relied for decades on statistical and computational practices that have little to do with mainstream data science. Information is still often used as evidence on the impact of new infrastructure even when it hardly contains any valid evidence. This book is an extremely welcome effort to provide young professionals with the skills needed to analyse how cities and transport networks actually work. The book is also highly relevant to anyone who will later want to build digital solutions to optimise urban travel based on emerging data sources". - Yaron Hollander, author of "Transport Modelling for a Complete Beginner"
Causal Inference In Python
DOWNLOAD
Author : Matheus Facure
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-07-14
Causal Inference In Python written by Matheus Facure and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-14 with Computers categories.
How many buyers will an additional dollar of online marketing bring in? Which customers will only buy when given a discount coupon? How do you establish an optimal pricing strategy? The best way to determine how the levers at our disposal affect the business metrics we want to drive is through causal inference. In this book, author Matheus Facure, senior data scientist at Nubank, explains the largely untapped potential of causal inference for estimating impacts and effects. Managers, data scientists, and business analysts will learn classical causal inference methods like randomized control trials (A/B tests), linear regression, propensity score, synthetic controls, and difference-in-differences. Each method is accompanied by an application in the industry to serve as a grounding example. With this book, you will: Learn how to use basic concepts of causal inference Frame a business problem as a causal inference problem Understand how bias gets in the way of causal inference Learn how causal effects can differ from person to person Use repeated observations of the same customers across time to adjust for biases Understand how causal effects differ across geographic locations Examine noncompliance bias and effect dilution
Business Data Science Combining Machine Learning And Economics To Optimize Automate And Accelerate Business Decisions
DOWNLOAD
Author : Matt Taddy
language : en
Publisher: McGraw Hill Professional
Release Date : 2019-08-23
Business Data Science Combining Machine Learning And Economics To Optimize Automate And Accelerate Business Decisions written by Matt Taddy and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-23 with Business & Economics categories.
Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
Causal Inference And Discovery In Python
DOWNLOAD
Author : Aleksander Molak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-05-31
Causal Inference And Discovery In Python written by Aleksander Molak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-31 with Computers categories.
Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methods Book DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality. You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more. By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefit Who this book is for This book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who’ve worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.