Beginning Data Analysis With Python And Jupyter Book
DOWNLOAD
Download Beginning Data Analysis With Python And Jupyter Book PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning Data Analysis With Python And Jupyter Book book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Beginning Data Science With Python And Jupyter
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-05
Beginning Data Science With Python And Jupyter written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-05 with Computers categories.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
Beginning Data Analysis With Python And Jupyter Book
DOWNLOAD
Author : Alex Galea
language : en
Publisher:
Release Date : 2018-05-29
Beginning Data Analysis With Python And Jupyter Book written by Alex Galea and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-29 with Computers categories.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
Python For Data Analysis
DOWNLOAD
Author : Andrew Park
language : en
Publisher: Andrew Park
Release Date : 2021-04-22
Python For Data Analysis written by Andrew Park and has been published by Andrew Park this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-22 with categories.
★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!
Become A Python Data Analyst
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Become A Python Data Analyst written by Alvaro Fuentes and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book
Python For Data Analysis
DOWNLOAD
Author : Samuel Samuel Burns
language : en
Publisher:
Release Date : 2019-02
Python For Data Analysis written by Samuel Samuel Burns and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02 with categories.
If you buy a new print edition of this book (or purchased one in the past), you can buy the Kindle Edition for FREE. Print edition purchase must be sold by Amazon!You want to learn Python for data analysis using NumPy, Pandas, and IPython, and you don't know how to start? You don't need a big boring and expensive textbook. This book is the best one for everyone.Order your book Now!! Why this book is the best guide for everyone? Here are the reasons:The author has explored everything about python for data analysis using pandas, NumPy, Ipython and Matplotlib libraries from the basics. A simple language has been used. Many examples have been given, both theoretically and programmatically. Screenshots showing program outputs have been added. The book is written chronologically, in a step-by-step manner. Book Objectives: The Aims and Objectives of the Book: To help you understand why you should choose Python for data analysis tasks. To help you know the various data analysis libraries supported by Python and how to use them. To help you know how to analyze your business data and draw meaningful insights for effective decision making. To equip you with data analysis skills using Python programming language. To help you know where data analysis is applied today and how to use it in your everyday life. Who is this Book is for? : Here are the target readers for this book: Anybody who is a complete beginner to data analysis with Python or data analysis in general. Anybody who wants to advance their data analysis skills with Python programming language. Anybody who wants to know how to use data analysis for the benefit of their business or brand. Professionals in data science, computer programming, computer scientist. Professors, lecturers or tutors who are looking to find better ways to explain python for data analysis to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, computer science,neural networks, machine learning, and deep learning. What do you need for this Book? : You are required to have installed the following on your computer: Python 3.X Numpy Pandas Matplotlib The Author guides you on how to install and configure the rest of the Python libraries that are required for data analysis. What is inside the book? : Why Python for Data Analysis? Exploring the Libraries Installation and Setup Using IPython Numpy Arrays and Vectorized Computation Pandas Library Data Wrangling Data Visualization Data Aggregation Working with Time Series Data Applications of Data Analysis Today The content of this book is all about data analysis with Python programming language using NumPy, Pandas, and IPython. It has been grouped into chapters, with each chapter exploring a different aspect of data analysis. The author has provided Python codes for doing different data analysis tasks. All these codes have been tested to ensure they are working correctly. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand. The author begins by exploring the basic to the complex tasks in data analysis.
Python Programming Data Analysis A Beginner S Handbook
DOWNLOAD
Author : Uma V
language : en
Publisher: Independently Published
Release Date : 2019-06-12
Python Programming Data Analysis A Beginner S Handbook written by Uma V and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-12 with categories.
This handbook will help you explore, harness and gain an appreciation of the competencies and features of Python. This book contains several examples that would enable you to learn python programming swiftly and commendably.Python is a high-level, interpreted and general-purpose dynamic programming language. It uses concise and easy-to-learn syntax which enables programmers to develop more complex programs in a much shorter time.This book provides all essential programming concepts and information you need to start developing your own Python program. The book provides a comprehensive walk-through of Python programming in a clear, straightforward manner. Important concepts are introduced with relevant examples, explanations, and comments. This book also provides a gentle introduction to the Pyplot, Numpy and Pandas modules. This will help you start your Data Analyst career. All the examples provided in this book have been executed successfully on ipython (Jupyter) notebook with Python3. You are hereby instructed to implement the code in the same platform for successful execution and better understanding.
An Introduction To Statistics With Python
DOWNLOAD
Author : Thomas Haslwanter
language : en
Publisher: Springer
Release Date : 2016-07-20
An Introduction To Statistics With Python written by Thomas Haslwanter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-20 with Computers categories.
This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.
Python For Data Analysis
DOWNLOAD
Author : Wes McKinney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-09-25
Python For Data Analysis written by Wes McKinney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-25 with Computers categories.
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Hands On Data Science With The Command Line
DOWNLOAD
Author : Jason Morris
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Hands On Data Science With The Command Line written by Jason Morris and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.
Big data processing and analytics at speed and scale using command line tools. Key FeaturesPerform string processing, numerical computations, and more using CLI toolsUnderstand the essential components of data science development workflowAutomate data pipeline scripts and visualization with the command lineBook Description The Command Line has been in existence on UNIX-based OSes in the form of Bash shell for over 3 decades. However, very little is known to developers as to how command-line tools can be OSEMN (pronounced as awesome and standing for Obtaining, Scrubbing, Exploring, Modeling, and iNterpreting data) for carrying out simple-to-advanced data science tasks at speed. This book will start with the requisite concepts and installation steps for carrying out data science tasks using the command line. You will learn to create a data pipeline to solve the problem of working with small-to medium-sized files on a single machine. You will understand the power of the command line, learn how to edit files using a text-based and an. You will not only learn how to automate jobs and scripts, but also learn how to visualize data using the command line. By the end of this book, you will learn how to speed up the process and perform automated tasks using command-line tools. What you will learnUnderstand how to set up the command line for data scienceUse AWK programming language commands to search quickly in large datasets.Work with files and APIs using the command lineShare and collect data with CLI toolsPerform visualization with commands and functionsUncover machine-level programming practices with a modern approach to data scienceWho this book is for This book is for data scientists and data analysts with little to no knowledge of the command line but has an understanding of data science. Perform everyday data science tasks using the power of command line tools.
Python For Excel Users
DOWNLOAD
Author : Chi-Chun Chou
language : en
Publisher: CRC Press
Release Date : 2025-10-06
Python For Excel Users written by Chi-Chun Chou and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-06 with Business & Economics categories.
Introduction: Elevate Your Analytics with Python In today’s data-driven world, the ability to efficiently analyze and interpret information is more crucial than ever, especially in the business sector. Python for Excel Users: A Beginner’s Guide is tailored for business students and professionals who are proficient in Microsoft Excel but are ready to embark on their Python journey. As a powerful and versatile programming language, Python has become indispensable in data analysis. This book bridges the gap between Excel and Python by providing parallel exercises that demonstrate how Python can amplify business analytics tasks with unmatched efficiency and flexibility. Through its side-by-side comparisons, interactive Python exercises, and a "teachable moment" approach, this guide offers a unique and intuitive learning experience. By translating familiar Excel tasks into Python’s dynamic and versatile ecosystem, you’ll not only enhance your data analysis skills but also gain confidence in programming. Why Python? Did you know that Python powers cutting-edge technologies like ChatGPT? Indeed, Python forms the foundation of many machine learning algorithms, including large language models (LLMs). Python is more than a programming language; it’s a tool for understanding and shaping the digital world. Despite its advanced capabilities, Python’s simple, readable syntax makes it accessible to everyone – from professional software developers to citizen developers like you. Dubbed the "language of the people," Python is revolutionizing how we approach problem-solving and automation in the modern world. Becoming Tomorrow’s Tech- Savvy Leaders The leaders of tomorrow are not just visionaries – they are innovators who harness the power of technology to drive change and inspire others. This book guides you through different scenarios to help you understand the connections between business questions and analytics steps we are taking. As business students embracing Python, you’re positioning yourselves as future-ready leaders equipped to navigate and excel in the complexities of modern business. Welcome to a journey that will elevate your analytics, expand your technological fluency, and transform you into a tech-savvy leader of the future.