Download Applied Machine Learning With Python Second Edition - eBooks (PDF)

Applied Machine Learning With Python Second Edition


Applied Machine Learning With Python Second Edition
DOWNLOAD

Download Applied Machine Learning With Python Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Machine Learning With Python Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applied Machine Learning With Python Second Edition


Applied Machine Learning With Python Second Edition
DOWNLOAD
Author : Andrea Giussani
language : en
Publisher: EGEA spa
Release Date : 2021-02-18T00:00:00+01:00

Applied Machine Learning With Python Second Edition written by Andrea Giussani and has been published by EGEA spa this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18T00:00:00+01:00 with Computers categories.


This book gives the fundamental principles for developing Machine Learning applications with Python.



Applied Machine Learning With Python


Applied Machine Learning With Python
DOWNLOAD
Author : Andrea Giussani
language : en
Publisher:
Release Date : 2020

Applied Machine Learning With Python written by Andrea Giussani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.




Python Machine Learning By Example


Python Machine Learning By Example
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-28

Python Machine Learning By Example written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-28 with Mathematics categories.


Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learn Key FeaturesExploit the power of Python to explore the world of data mining and data analyticsDiscover machine learning algorithms to solve complex challenges faced by data scientists todayUse Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projectsBook Description The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities. What you will learnUnderstand the important concepts in machine learning and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text and NLP using Python libraries such NLTK and gensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow, and scikit-learnWho this book is for If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.



Python Machine Learning Cookbook


Python Machine Learning Cookbook
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-03-30

Python Machine Learning Cookbook written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-30 with Computers categories.


Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key FeaturesLearn and implement machine learning algorithms in a variety of real-life scenariosCover a range of tasks catering to supervised, unsupervised and reinforcement learning techniquesFind easy-to-follow code solutions for tackling common and not-so-common challengesBook Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learnUse predictive modeling and apply it to real-world problemsExplore data visualization techniques to interact with your dataLearn how to build a recommendation engineUnderstand how to interact with text data and build models to analyze itWork with speech data and recognize spoken words using Hidden Markov ModelsGet well versed with reinforcement learning, automated ML, and transfer learningWork with image data and build systems for image recognition and biometric face recognitionUse deep neural networks to build an optical character recognition systemWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.



Deep Learning With Python Second Edition


Deep Learning With Python Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-21

Deep Learning With Python Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-21 with Computers categories.


Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12

Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.


Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.



Machine Learning With Tensorflow Second Edition


Machine Learning With Tensorflow Second Edition
DOWNLOAD
Author : Chris Mattmann
language : en
Publisher: Simon and Schuster
Release Date : 2020-12-23

Machine Learning With Tensorflow Second Edition written by Chris Mattmann and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-23 with Computers categories.


Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape



Deep Learning With Tensorflow


Deep Learning With Tensorflow
DOWNLOAD
Author : Giancarlo Zaccone
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-03-30

Deep Learning With Tensorflow written by Giancarlo Zaccone and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-30 with Computers categories.


Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow. Key Features Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide Gain real-world contextualization through some deep learning problems concerning research and application Book Description Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects. What you will learn Apply deep machine intelligence and GPU computing with TensorFlow Access public datasets and use TensorFlow to load, process, and transform the data Discover how to use the high-level TensorFlow API to build more powerful applications Use deep learning for scalable object detection and mobile computing Train machines quickly to learn from data by exploring reinforcement learning techniques Explore active areas of deep learning research and applications Who this book is for The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.



Handbook Of Applied Hydrology Second Edition


Handbook Of Applied Hydrology Second Edition
DOWNLOAD
Author : Vijay P. Singh
language : en
Publisher: McGraw Hill Professional
Release Date : 2016-03-07

Handbook Of Applied Hydrology Second Edition written by Vijay P. Singh and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-07 with Technology & Engineering categories.


Fully Updated Hydrology Principles, Methods, and Applications Thoroughly revised for the first time in 50 years, this industry-standard resource features chapter contributions from a “who’s who” of international hydrology experts. Compiled by a colleague of the late Dr. Chow, Chow’s Handbook of Applied Hydrology, Second Edition, covers scientific and engineering fundamentals and presents all-new methods, processes, and technologies. Complete details are provided for the full range of ecosystems and models. Advanced chapters look to the future of hydrology, including climate change impacts, extraterrestrial water, social hydrology, and water security. Chow’s Handbook of Applied Hydrology, Second Edition, covers: · The Fundamentals of Hydrology · Data Collection and Processing · Hydrology Methods · Hydrologic Processes and Modeling · Sediment and Pollutant Transport · Hydrometeorologic and Hydrologic Extremes · Systems Hydrology · Hydrology of Large River and Lake Basins · Applications and Design · The Future of Hydrology



Python Machine Learning Blueprints


Python Machine Learning Blueprints
DOWNLOAD
Author : Alexander Combs
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Python Machine Learning Blueprints written by Alexander Combs and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras Key FeaturesGet to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and KerasImplement advanced concepts and popular machine learning algorithms in real-world projectsBuild analytics, computer vision, and neural network projects Book Description Machine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects. The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you’ll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you’ll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you’ll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you’ll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks. By the end of this book, you’ll be able to analyze data seamlessly and make a powerful impact through your projects. What you will learnUnderstand the Python data science stack and commonly used algorithmsBuild a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feedCreate applications that will recommend GitHub repositories based on ones you’ve starred, watched, or forkedGain the skills to build a chatbot from scratch using PySparkDevelop a market-prediction app using stock dataDelve into advanced concepts such as computer vision, neural networks, and deep learningWho this book is for This book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.