An Introduction To Statistical Learning
DOWNLOAD
Download An Introduction To Statistical Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Statistical Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2021-07-29
An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-29 with Mathematics categories.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30
An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
An Elementary Introduction To Statistical Learning Theory
DOWNLOAD
Author : Sanjeev Kulkarni
language : en
Publisher: John Wiley & Sons
Release Date : 2011-06-09
An Elementary Introduction To Statistical Learning Theory written by Sanjeev Kulkarni and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Mathematics categories.
A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference. Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting. Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study. An Elementary Introduction to Statistical Learning Theory is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.
Machine Learning And Data Science
DOWNLOAD
Author : Daniel D. Gutierrez
language : en
Publisher:
Release Date : 2015
Machine Learning And Data Science written by Daniel D. Gutierrez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.
This book can be viewed as a set of essential tools we need for a long-term career in the data science field - recommendations are provided for further study in order to build advanced skills in tackling important data problem domains.
A First Course In Statistical Learning
DOWNLOAD
Author : Johannes Lederer
language : en
Publisher: Springer Nature
Release Date : 2025-02-25
A First Course In Statistical Learning written by Johannes Lederer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-25 with Computers categories.
This textbook introduces the fundamental concepts and methods of statistical learning. It uses Python and provides a unique approach by blending theory, data examples, software code, and exercises from beginning to end for a profound yet practical introduction to statistical learning. The book consists of three parts: The first one presents data in the framework of probability theory, exploratory data analysis, and unsupervised learning. The second part on inferential data analysis covers linear and logistic regression and regularization. The last part studies machine learning with a focus on support-vector machines and deep learning. Each chapter is based on a dataset, which can be downloaded from the book's homepage. In addition, the book has the following features: A careful selection of topics ensures rapid progress. An opening question at the beginning of each chapter leads the reader through the topic. Expositions are rigorous yet based on elementary mathematics. More than two hundred exercises help digest the material. A crisp discussion section at the end of each chapter summarizes the key concepts and highlights practical implications. Numerous suggestions for further reading guide the reader in finding additional information. This book is for everyone who wants to understand and apply concepts and methods of statistical learning. Typical readers are graduate and advanced undergraduate students in data-intensive fields such as computer science, biology, psychology, business, and engineering, and graduates preparing for their job interviews.
Machine Learning
DOWNLOAD
Author : RODRIGO F MELLO
language : en
Publisher: Springer
Release Date : 2018-08-01
Machine Learning written by RODRIGO F MELLO and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-01 with Computers categories.
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
Machine Learning And Data Science 2nd Edition
DOWNLOAD
Author : Daniel Gutierrez
language : en
Publisher: Technics Publications
Release Date : 2025-08-25
Machine Learning And Data Science 2nd Edition written by Daniel Gutierrez and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-08-25 with Computers categories.
Build real-world machine learning solutions from scratch using R-no advanced math or prior coding experience required. This second edition of Machine Learning and Data Science offers an accessible, hands-on introduction to the core principles of machine learning, statistical modeling, and practical data science-without overwhelming readers with complex formulas or technical jargon. Perfect for beginners, analysts, and business professionals transitioning into data science, this book provides a complete project-based roadmap from data wrangling to model deployment using the powerful R programming language. Whether you're analyzing marketing trends, predicting customer behavior, or detecting fraud, this book equips you with the foundation needed to solve real problems using machine learning. Author and data scientist Daniel D. Gutierrez draws on his experience teaching at UCLA and years of industry practice to guide you through essential topics, including regression, classification, clustering, feature engineering, and model evaluation. You'll explore supervised and unsupervised learning techniques, apply visualization strategies, and build intuitive workflows that mirror the data science process used by professionals across finance, healthcare, marketing, and more. Unlike overly theoretical texts, this guide emphasizes application-what to do, why to do it, and how to do it in R. Inside, you'll find step-by-step tutorials, use case examples from Kaggle competitions, and easy-to-follow code snippets that let you apply machine learning concepts immediately. Learn how to access and clean real-world data sets, implement algorithms like decision trees, random forests, logistic regression, and k-means clustering, and avoid common pitfalls such as data leakage and overfitting. Move from exploratory data analysis to powerful predictive modeling. Whether you're a student, aspiring data scientist, or working analyst seeking to expand your skills, this is your essential, beginner-friendly guide to statistical learning and machine learning with R.
An Introduction To Statistics
DOWNLOAD
Author : Kieth A. Carlson
language : en
Publisher: SAGE Publications
Release Date : 2016-12-30
An Introduction To Statistics written by Kieth A. Carlson and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-30 with Psychology categories.
An Introduction to Statistics: An Active Learning Approach, Second Edition by Kieth A. Carlson and Jennifer R. Winquist takes a unique, active approach to teaching and learning introductory statistics that allows students to discover and correct their misunderstandings as chapters progress rather than at their conclusion. Empirically-developed, self-correcting activities reinforce and expand on fundamental concepts, targeting and holding students’ attention. Based on contemporary memory research, this learner-centered approach leads to better long-term retention through active engagement while generating explanations. Along with carefully placed reading questions, this edition includes learning objectives, realistic research scenarios, practice problems, self-test questions, problem sets, and practice tests to help students become more confident in their ability to perform statistics.
An Introduction To Statistical Learning
DOWNLOAD
Author : Peter Forrest
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-07-04
An Introduction To Statistical Learning written by Peter Forrest and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-04 with categories.
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
Introduction To Machine Learning
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press (MA)
Release Date : 2010
Introduction To Machine Learning written by Ethem Alpaydin and has been published by MIT Press (MA) this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.
A new edition of an introductory text in machine learning that gives a unified treatment of machine learning problems and solutions.