Download Advanced Data Science And Analytics With Python - eBooks (PDF)

Advanced Data Science And Analytics With Python


Advanced Data Science And Analytics With Python
DOWNLOAD

Download Advanced Data Science And Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Data Science And Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Data Science And Analytics With Python


Advanced Data Science And Analytics With Python
DOWNLOAD
Author : Jesús Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2020-05-05

Advanced Data Science And Analytics With Python written by Jesús Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Business & Economics categories.


Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.



Advanced Data Analytics Using Python


Advanced Data Analytics Using Python
DOWNLOAD
Author : Sayan Mukhopadhyay
language : en
Publisher: Apress
Release Date : 2018-03-29

Advanced Data Analytics Using Python written by Sayan Mukhopadhyay and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-29 with Computers categories.


Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.



Data Science And Analytics With Python


Data Science And Analytics With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2025-06-03

Data Science And Analytics With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-03 with Computers categories.


Since the first edition of “Data Science and Analytics with Python” we have witnessed an unprecedented explosion in the interest and development within the fields of Artificial Intelligence and Machine Learning. This surge has led to the widespread adoption of the book, not just among business practitioners, but also by universities as a key textbook. In response to this growth, this new edition builds upon the success of its predecessor, expanding several sections, updating the code to reflect the latest advancements in Python libraries and modules, and addressing the ever-evolving landscape of generative AI (GenAI). This updated edition ensures that the examples and exercises remain relevant by incorporating the latest features of popular libraries such as Scikit-learn, pandas, and Numpy. Additionally, new sections delve into cutting-edge topics like generative AI, reflecting the advancements and the expanding role these technologies play. This edition also addresses crucial issues of explainability, transparency, and fairness in AI. These topics have rightly gained significant attention in recent years. As AI integrates more deeply into various aspects of our lives, understanding and mitigating biases, ensuring fairness, and maintaining transparency become paramount. This book provides comprehensive coverage of these topics, offering practical insights and guidance for data scientists and analysts. Designed as a practical companion for data analysts and budding data scientists, this book assumes a working knowledge of programming and statistical modelling but aims to guide readers deeper into the wonders of data analytics and machine learning. Maintaining the book's structure, each chapter stands alone as much as possible, allowing readers to use it as a reference as well as a textbook. Whether revisiting fundamental concepts or diving into new, advanced topics, this book offers something valuable for every reader.



Statistics And Data Visualisation With Python


Statistics And Data Visualisation With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2023-01-31

Statistics And Data Visualisation With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-31 with Social Science categories.


This book is intended to serve as a bridge in statistics for graduates and business practitioners interested in using their skills in the area of data science and analytics as well as statistical analysis in general. On the one hand, the book is intended to be a refresher for readers who have taken some courses in statistics, but who have not necessarily used it in their day-to-day work. On the other hand, the material can be suitable for readers interested in the subject as a first encounter with statistical work in Python. Statistics and Data Visualisation with Python aims to build statistical knowledge from the ground up by enabling the reader to understand the ideas behind inferential statistics and begin to formulate hypotheses that form the foundations for the applications and algorithms in statistical analysis, business analytics, machine learning, and applied machine learning. This book begins with the basics of programming in Python and data analysis, to help construct a solid basis in statistical methods and hypothesis testing, which are useful in many modern applications.



Advanced Data Analytics Using Python


Advanced Data Analytics Using Python
DOWNLOAD
Author : Sayan Mukhopadhyay
language : en
Publisher: Apress
Release Date : 2022-11-26

Advanced Data Analytics Using Python written by Sayan Mukhopadhyay and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-26 with Computers categories.


Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment. Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning. Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application. What You'll Learn Build intelligent systems for enterprise Review time series analysis, classifications, regression, and clustering Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning Use cloud platforms like GCP and AWS in data analytics Understand Covers design patterns in Python Who This Book Is For Data scientists and software developers interested in the field of data analytics.



Advanced Analytics In Power Bi With R And Python


Advanced Analytics In Power Bi With R And Python
DOWNLOAD
Author : Ryan Wade
language : en
Publisher: Apress
Release Date : 2020-09-05

Advanced Analytics In Power Bi With R And Python written by Ryan Wade and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-05 with Computers categories.


This easy-to-follow guide provides R and Python recipes to help you learn and apply the top languages in the field of data analytics to your work in Microsoft Power BI. Data analytics expert and author Ryan Wade shows you how to use R and Python to perform tasks that are extremely hard to do, if not impossible, using native Power BI tools without Power BI Premium capacity. For example, you will learn to score Power BI data using custom data science models, including powerful models from Microsoft Cognitive Services. The R and Python languages are powerful complements to Power BI. They enable advanced data transformation techniques that are difficult to perform in Power BI in its default configuration, but become easier through the application of data wrangling features that languages such as R and Python support. If you are a BI developer, business analyst, data analyst, or a data scientist who wants to push Power BI and transform it from being just a business intelligence tool into an advanced data analytics tool, then this is the book to help you to do that. What You Will Learn Create advanced data visualizations through R using the ggplot2 package Ingest data using R and Python to overcome the limitations of Power Query Apply machine learning models to your data using R and Python Incorporate advanced AI in Power BI via Microsoft Cognitive Services, IBM Watson, and pre-trained models in SQL Server Machine Learning Services Perform string manipulations not otherwise possible in Power BI using R and Python Who This Book Is For Power users, data analysts, and data scientists who want to go beyond Power BI’s built-in functionality to create advanced visualizations, transform data in ways not otherwise supported, and automate data ingestion from sources such as SQL Server and Excel in a more succinct way



Mastering Pandas


Mastering Pandas
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-10-25

Mastering Pandas written by Ashish Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-25 with Computers categories.


Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key FeaturesManipulate and analyze your data expertly using the power of pandasWork with missing data and time series data and become a true pandas expertIncludes expert tips and techniques on making your data analysis tasks easierBook Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learnSpeed up your data analysis by importing data into pandasKeep relevant data points by selecting subsets of your dataCreate a high-quality dataset by cleaning data and fixing missing valuesCompute actionable analytics with grouping and aggregation in pandasMaster time series data analysis in pandasMake powerful reports in pandas using Jupyter notebooksWho this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.



Python For Data Science


Python For Data Science
DOWNLOAD
Author : Ethan Williams
language : en
Publisher:
Release Date : 2020-04-11

Python For Data Science written by Ethan Williams and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-11 with categories.


Years ago, when the concept of data science was first introduced, it only meant gathering statistical data and cleaning data sets. It was simply just the science of collecting and presenting data. Together with technology evolution, however, paired with the increasing number of information we now have and continuously acquire, data science means so much more. It has now grown into a field of study that includes data analytics, predictive science and analytics, data mining, business intelligence, and machine learning, to name a few. It has now broken free of its confined definition of merely collecting and distributing data, which are very broad concepts and probably why people do not appreciate it today. The set of skills and applications we currently associate with data science is not absolute. Data scientists are free to interpret and use data science to whatever definition and goal they have, making data science an evolutionary concept free for humanity to define. Business intelligence is the process of collecting, integrating, and analyzing data for managers and executive officers with the primary goal of using this data for business decisions. If you look at the definition, it is very similar to what data science does as well. It acquires information, processes it, analyzes it, and also presents the data to relevant people to make smart decisions. And maybe that's why the two terms are used intertwined with each other. Both of these concepts use and revolve around data and users' ability to maximize it. The best way to differentiate between them is simply to understand that, although data science can be used for business intelligence, the latter concept is solely for business. This includes developing business insights, organizing data but only extracting those that would be relevant for the growth of the business, and presenting the data in a manner where business executives and stakeholders can derive decisions from. Data Science, since it is the broader concept, acquires much larger data and uses comparatively more complex systems, algorithms, and predictive models. Interestingly, business intelligence uses past data and information from consumers, government statistics, and international trends to understand what is happening now. Data Science, however, uses the same set of information but primarily is concerned with future predictions and forecasts growth. Their outputs, although similar in goal, are presented in different ways. In business intelligence, the reports are mainly presented in the simplest way possible, like reports, graphs, and business statistics. Conversely, in data science, the data is presented using a data model. It uses machine learning to gain future insights accurately based on whatever information is fed into it. It does not only capture the trends and leave the interpretation to human capacity but also gives the insights that are based on factual data. This makes predicting not only easier but also increasingly accurate. What this guide intends to do is go in-depth on some of the more popular advanced data science theories using Python, as well as an overview of machine learning, algorithms, and an in-depth tutorial on using SciPy to optimize your data so, let's dive in.



Data Analysis Foundations With Python


Data Analysis Foundations With Python
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-12

Data Analysis Foundations With Python written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-12 with Computers categories.


Dive into data analysis with Python, starting from the basics to advanced techniques. This course covers Python programming, data manipulation with Pandas, data visualization, exploratory data analysis, and machine learning. Key Features From Python basics to advanced data analysis techniques. Apply your skills to practical scenarios through real-world case studies. Detailed projects and quizzes to help gain the necessary skills. Book DescriptionEmbark on a comprehensive journey through data analysis with Python. Begin with an introduction to data analysis and Python, setting a strong foundation before delving into Python programming basics. Learn to set up your data analysis environment, ensuring you have the necessary tools and libraries at your fingertips. As you progress, gain proficiency in NumPy for numerical operations and Pandas for data manipulation, mastering the skills to handle and transform data efficiently. Proceed to data visualization with Matplotlib and Seaborn, where you'll create insightful visualizations to uncover patterns and trends. Understand the core principles of exploratory data analysis (EDA) and data preprocessing, preparing your data for robust analysis. Explore probability theory and hypothesis testing to make data-driven conclusions and get introduced to the fundamentals of machine learning. Delve into supervised and unsupervised learning techniques, laying the groundwork for predictive modeling. To solidify your knowledge, engage with two practical case studies: sales data analysis and social media sentiment analysis. These real-world applications will demonstrate best practices and provide valuable tips for your data analysis projects.What you will learn Develop a strong foundation in Python for data analysis. Manipulate and analyze data using NumPy and Pandas. Create insightful data visualizations with Matplotlib and Seaborn. Understand and apply probability theory and hypothesis testing. Implement supervised and unsupervised machine learning algorithms. Execute real-world data analysis projects with confidence. Who this book is for This course adopts a hands-on approach, seamlessly blending theoretical lessons with practical exercises and real-world case studies. Practical exercises are designed to apply theoretical knowledge, providing learners with the opportunity to experiment and learn through doing. Real-world applications and examples are integrated throughout the course to contextualize concepts, making the learning process engaging, relevant, and effective. By the end of the course, students will have a thorough understanding of the subject matter and the ability to apply their knowledge in practical scenarios.



Python


Python
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher:
Release Date : 2017-12-26

Python written by Ashish Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-26 with Computers categories.


Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Key Features A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Learn how to use popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Master open source Python tools to build sophisticated predictive models Book Description Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python. You'll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling. Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books: 1. Learning Predictive Analytics with Python 2. Mastering Predictive Analytics with Python What you will learn Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy Master the use of Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover advanced methods to analyze structured and unstructured data Visualize the performance of models and the insights they produce Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis Who this book is for This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move on from a conceptual understanding of advanced analytics and become an expert in designing and building advanced analytics solutions using Python. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about predictive analytics algorithms, this book will also help you.