Download Python For Data Science Fundamentals - eBooks (PDF)

Python For Data Science Fundamentals


Python For Data Science Fundamentals
DOWNLOAD

Download Python For Data Science Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python For Data Science Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Science Fundamentals Part 1


Data Science Fundamentals Part 1
DOWNLOAD
Author : Jonathan Dinu
language : en
Publisher:
Release Date : 2017

Data Science Fundamentals Part 1 written by Jonathan Dinu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


20 Hours of Video Instruction Data Science Fundamentals LiveLessons teaches you the foundational concepts, theory, and techniques you need to know to become an effective data scientist. The videos present you with applied, example-driven lessons in Python and its associated ecosystem of libraries, where you get your hands dirty with real datasets and see real results. Description If nothing else, by the end of this video course you will have analyzed a number of datasets from the wild, built a handful of applications, and applied machine learning algorithms in meaningful ways to get real results. And along the way you learn the best practices and computational techniques used by a professional data scientist. More specifically, you learn how to acquire data that is openly accessible on the Internet by working with APIs. You learn how to parse XML and JSON data to load it into a relational database. About the Instructor Jonathan Dinu is an author, researcher, and most importantly, an educator. He is currently pursuing a Ph.D. in Computer Science at Carnegie Mellon's Human Computer Interaction Institute (HCII), where he is working to democratize machine learning and artificial intelligence through interpretable and interactive algorithms. Previously, he founded Zipfian Academy (an immersive data science training program acquired by Galvanize), has taught classes at the University of San Francisco, and has built a Data Visualization MOOC with Udacity. In addition to his professional data science experience, he has run data science trainings for a Fortune 500 company and taught workshops at Strata, PyData, and DataWeek (among others). He first discovered his love of all things data while studying Computer Science and Physics at UC Berkeley, and in a former life he worked for Alpine Data Labs developing distributed machine learning algorithms for predictive analytics on Hadoop. Jonathan has always had a passion for sharing the things he has learned in the most creative ways he can. When he is not working with students, you can find him blogging about data, visualization, and education at hopelessoptimism.com or rambling on Twitter jonathandinu. Skill Level Beginner What You Will Learn How to get up and running with a Python data science environment The essentials of Python 3, including object-oriented programming The basics of the data science process and what each step entails How to build a simple (yet powerful) recommendation engine for Air...



Data Science Fundamentals For Python And Mongodb


Data Science Fundamentals For Python And Mongodb
DOWNLOAD
Author : David Paper
language : en
Publisher:
Release Date : 2018

Data Science Fundamentals For Python And Mongodb written by David Paper and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Data mining categories.


"Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is rocky at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced."--



Python Data Science Essentials


Python Data Science Essentials
DOWNLOAD
Author : Alberto Boschetti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-10-28

Python Data Science Essentials written by Alberto Boschetti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-28 with Computers categories.


Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.



Python For Data Analysis


Python For Data Analysis
DOWNLOAD
Author : Brady Ellison
language : en
Publisher:
Release Date :

Python For Data Analysis written by Brady Ellison and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Ready to learn Data Science through Python language? Python for Data Analysis is a step-by-step guide for beginners and dabblers-alike. This book is designed to offer working knowledge of Python and data science and some of the tools required to apply that knowledge. It’s possible that you have little experience with or knowledge of data analysis and are interested in it. You might have some experience in coding. You may have worked with data before and want to use Python. We have made this book in a way that will be helpful to all these groups and more besides in varying ways. This can serve as an introduction to the most current tools and functions of those tools used by data scientists. In this book You will learn: Data Science/Analysis and its applications IPython and Jupyter - an introduction to the basic tools and how to navigate and use them. You will also learn about its importance in a data scientist’s ecosystem. Pandas - a powerful data management Python library that lets you do interesting things with data. You will learn all the basics you need to get started. NumPy - a powerful numerical library for Python. You will learn more about its advantages. Get your copy now



Python Data Science


Python Data Science
DOWNLOAD
Author : Christopher Wilkinson
language : en
Publisher:
Release Date : 2019-10-26

Python Data Science written by Christopher Wilkinson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-26 with categories.


An Ultimate Guide to Learn Fundamentals of Python Data Science is full of insights and strategies for data scientists, programming professionals, and students who want to equip themselves with the new trending libraries and functions of Python as a data management tool. This book has all the major techniques of data collection, interpretation and processing to achieve refined information. The reader will learn about the scientific research of data, syntax of Python programming language, and all the basic knowledge of imported libraries and methods.An effective approach of Python data science can save time, resources, and energy. You can learn to help any company with the running processes: accounts, HR modules, sales, services and more. Keeping in view the requirements of brand and competition, this guide for beginners covers all the data management strategies and tactics. The development of the well-structured function of Python is purely a systematic and knowledge-based technique. Building a scientific data research system has never been as easy as it is today. A lot of companies have shifted their data systems to the open-source, easy to learn, Python language. If you really want to learn Python Data Science, don't waste your time looking around - buy this extraordinary book now to get started. It is a detailed book with a comprehensive knowledge of data science, Python data structures, standard libraries, data science frameworks and predictive models in Python. Build your success story through learning the best practices of data science. Click the Buy button to get started.



Data Science Crash Course For Beginners With Python Fundamentals And Practices With Python


Data Science Crash Course For Beginners With Python Fundamentals And Practices With Python
DOWNLOAD
Author : Ai Publishing
language : en
Publisher: AI Publishing LLC
Release Date : 2020-08-31

Data Science Crash Course For Beginners With Python Fundamentals And Practices With Python written by Ai Publishing and has been published by AI Publishing LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-31 with Computers categories.


Data Science Crash Course for Beginners with Python Data Science is here to stay. The tremendous growth in the volume, velocity, and variety of data has a substantial impact on every aspect of a business. While data continues to grow exponentially, accuracy remains a problem. This is where data scientists play a decisive role. A data scientist analyzes data, discovers new insights, paints a picture, and creates a vision. And a competent data scientist will provide a business with the competitive edge it needs and address pressing business problems. Data Science Crash Course for Beginners with Python presents you with a hands-on approach to learn data science fast. How Is This Book Different? Every book by AI Publishing has been carefully crafted. This book lays equal emphasis on the theoretical sections as well as the practical aspects of data science. Each chapter provides the theoretical background behind the numerous data science techniques, and practical examples explain the working of these techniques. In the Further Reading section of each chapter, you will find the links to informative data science posts. This book presents you with the tools and packages you need to kick-start data science projects to resolve problems of practical nature. Special emphasis is laid on the main stages of a data science pipeline--data acquisition, data preparation, exploratory data analysis, data modeling and evaluation, and interpretation of the results. In the Data Science Resources section, links to data science resources, articles, interviews, and data science newsletters are provided. The author has also put together a list of contests and competitions that you can try on your own. Another added benefit of buying this book is you get instant access to all the learning material presented with this book-- PDFs, Python codes, exercises, and references--on the publisher's website. They will not cost you an extra cent. The datasets used in this book can be downloaded at runtime, or accessed via the Resources/Datasets folder. The author simplifies your learning by holding your hand through everything. The step by step description of the installation of the software you need for implementing the various data science techniques in this book is guaranteed to make your learning easier. So, right from the beginning, you can experiment with the practical aspects of data science. You'll also find the quick course on Python programming in the second and third chapters immensely helpful, especially if you are new to Python. This book gives you access to all the codes and datasets. So, access to a computer with the internet is sufficient to get started. The topics covered include: Introduction to Data Science and Decision Making Python Installation and Libraries for Data Science Review of Python for Data Science Data Acquisition Data Preparation (Preprocessing) Exploratory Data Analysis Data Modeling and Evaluation Using Machine Learning Interpretation and Reporting of Findings Data Science Projects Key Insights and Further Avenues Click the BUY button to start your Data Science journey.



Python Data Science Essentials


Python Data Science Essentials
DOWNLOAD
Author : MARK JOHN LADO
language : en
Publisher: Amazon Digital Services LLC - Kdp
Release Date : 2024-03-18

Python Data Science Essentials written by MARK JOHN LADO and has been published by Amazon Digital Services LLC - Kdp this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-18 with Computers categories.


The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.



Data Science Foundation Fundamentals


Data Science Foundation Fundamentals
DOWNLOAD
Author : Mr. Ramkumar A
language : en
Publisher: Xoffencerpublication
Release Date : 2023-08-21

Data Science Foundation Fundamentals written by Mr. Ramkumar A and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-21 with Computers categories.


The academic field of computer science did not develop as a separate subject of study until the 1960s after it had been in existence since the 1950s. The mathematical theory that underpinned the fields of computer programming, compilers, and operating systems was one of the primary focuses of this class. Other important topics were the various programming languages and operating systems. Context-free languages, finite automata, regular expressions, and computability were a few of the topics that were discussed in theoretical computer science lectures. The area of study known as algorithmic analysis became an essential component of theory in the 1970s, after having been mostly overlooked for the majority of its existence up to that point in time. The purpose of this initiative was to investigate and identify practical applications for computer technology. At the time, a significant change is taking place, and a greater amount of attention is being paid to the vast number of different applications that may be utilized. This shift is the cumulative effect of several separate variables coming together at the same time. The convergence of computing and communication technology has been a major motivator, and as a result, this change may be primarily attributed to that convergence. Our current knowledge of data and the most effective approach to work with it in the modern world has to be revised in light of recent advancements in the capability to monitor, collect, and store data in a variety of fields, including the natural sciences, business, and other fields. This is necessary because of the recent breakthroughs in these capabilities. This is as a result of recent advancements that have been made in these capacities. The widespread adoption of the internet and other forms of social networking as indispensable components of people's lives brings with it a variety of opportunities for theoretical development as well as difficulties in actual use. Traditional subfields of computer science continue to hold a significant amount of weight in the field as a whole; however, researchers of the future will focus more on how to use computers to comprehend and extract usable information from massive amounts of data arising from applications rather than how to make computers useful for solving particular problems in a well-defined manner. This shift in emphasis is due to the fact that researchers of 1 | P a ge the future will be more concerned with how to use computers to comprehend and extract usable information from massive amounts of data arising from applications. This shift in emphasis is because researchers of the future will be more concerned with how to use the information they find. As a result of this, we felt it necessary to compile this book, which discusses a theory that would, according to our projections, play an important role within the next 40 years. We think that having a grasp of this issue will provide students with an advantage in the next 40 years, in the same way that having an understanding of automata theory, algorithms, and other topics of a similar sort provided students an advantage in the 40 years prior to this one, and in the 40 years after this one. A movement toward placing a larger emphasis on probabilities, statistical approaches, and numerical processes is one of the most significant shifts that has taken place as a result of the developments that have taken place. Early drafts of the book have been assigned reading at a broad variety of academic levels, ranging all the way from the undergraduate level to the graduate level. The information that is expected to have been learned before for a class that is taken at the undergraduate level may be found in the appendix. As a result of this, the appendix will provide you with some activities to do as a component of your project.



Data Science Essentials Foundations And Analytics Fundamentals


Data Science Essentials Foundations And Analytics Fundamentals
DOWNLOAD
Author : Venkata Naidu Udamala,
language : en
Publisher: Leilani Katie Publication
Release Date : 2024-10-29

Data Science Essentials Foundations And Analytics Fundamentals written by Venkata Naidu Udamala, and has been published by Leilani Katie Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-29 with Language Arts & Disciplines categories.


Venkata Naidu Udamala, Solution Architect, Cloudera, Irving, Texas, United



Data Science From Scratch With Python


Data Science From Scratch With Python
DOWNLOAD
Author : Steve Geddis
language : en
Publisher:
Release Date : 2020-10-08

Data Science From Scratch With Python written by Steve Geddis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-08 with categories.


Data are no longer just information but a resource that is growing exponentially. There are many powerful ways to store and manipulate data and there are many helpful data science tools that you can use to begin conducting your own analyses. If you are willing to understand more, this book is a crash course on data science. This book will guide you exploring, among others: The Python programming environment, including fundamental Python programming techniques; Basics of data analysis in Python; What is a Data Scientist? Functionality and features used for data science; Data manipulation using the Python Pandas; models such as neural networks, plotting and clustering; fundamentals of big data, deep learning, artificial intelligence and machine learning; And much much more. Begin your journey and make sure you get the best crash course on data science available!