Download Machine Learning In Computer Vision - eBooks (PDF)

Machine Learning In Computer Vision


Machine Learning In Computer Vision
DOWNLOAD

Download Machine Learning In Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning In Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning


Deep Learning
DOWNLOAD
Author : Rob Botwright
language : en
Publisher: Rob Botwright
Release Date : 2024

Deep Learning written by Rob Botwright and has been published by Rob Botwright this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Computers categories.


Introducing the Ultimate AI Book Bundle: Deep Learning, Computer Vision, Python Machine Learning, and Neural Networks Are you ready to embark on an exhilarating journey into the world of artificial intelligence, deep learning, and computer vision? Look no further! Our carefully curated book bundle, "DEEP LEARNING: COMPUTER VISION, PYTHON MACHINE LEARNING AND NEURAL NETWORKS," offers you a comprehensive roadmap to AI mastery. BOOK 1 - DEEP LEARNING DEMYSTIFIED: A BEGINNER'S GUIDE 🚀 Perfect for beginners, this book dismantles the complexities of deep learning. From neural networks to Python programming, you'll build a strong foundation in AI. BOOK 2 - MASTERING COMPUTER VISION WITH DEEP LEARNING 🌟 Dive into the captivating world of computer vision. Unlock the secrets of image processing, convolutional neural networks (CNNs), and object recognition. Harness the power of visual intelligence! BOOK 3 - PYTHON MACHINE LEARNING AND NEURAL NETWORKS: FROM NOVICE TO PRO 📊 Elevate your skills with this intermediate volume. Delve into data preprocessing, supervised and unsupervised learning, and become proficient in training neural networks. BOOK 4 - ADVANCED DEEP LEARNING: CUTTING-EDGE TECHNIQUES AND APPLICATIONS 🔥 Ready to conquer advanced techniques? Learn optimization strategies, tackle common deep learning challenges, and explore real-world applications shaping the future. 🎉 What You'll Gain: · A strong foundation in deep learning · Proficiency in computer vision · Mastery of Python machine learning · Advanced deep learning skills · Real-world application knowledge · Cutting-edge AI insights 📚 Why Choose Our Book Bundle? · Expertly curated content · Beginner to expert progression · Clear explanations and hands-on examples · Comprehensive coverage of AI topics · Practical real-world applications · Stay ahead with emerging AI trends 🌐 Who Should Grab This Bundle? · Beginners eager to start their AI journey · Intermediate learners looking to expand their skill set · Experts seeking advanced deep learning insights · Anyone curious about AI's limitless possibilities 📦 Limited-Time Offer: Get all four books in one bundle and save! Don't miss this chance to accelerate your AI knowledge and skills. 🔒 Secure Your AI Mastery: Click "Add to Cart" now and embark on an educational adventure that will redefine your understanding of artificial intelligence. Your journey to AI excellence begins here!



Deep Learning For Computer Vision


Deep Learning For Computer Vision
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-04-04

Deep Learning For Computer Vision written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-04 with Computers categories.


Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.



Challenges And Applications For Implementing Machine Learning In Computer Vision


Challenges And Applications For Implementing Machine Learning In Computer Vision
DOWNLOAD
Author : Kashyap, Ramgopal
language : en
Publisher: IGI Global
Release Date : 2019-10-04

Challenges And Applications For Implementing Machine Learning In Computer Vision written by Kashyap, Ramgopal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-04 with Computers categories.


Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.



Deep Learning In Computer Vision


Deep Learning In Computer Vision
DOWNLOAD
Author : Mahmoud Hassaballah
language : en
Publisher: CRC Press
Release Date : 2020-03-23

Deep Learning In Computer Vision written by Mahmoud Hassaballah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-23 with Computers categories.


Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.



Deep Learning For Computer Vision


Deep Learning For Computer Vision
DOWNLOAD
Author : Rajalingappaa Shanmugamani
language : en
Publisher:
Release Date : 2018

Deep Learning For Computer Vision written by Rajalingappaa Shanmugamani and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with COMPUTERS categories.




Machine Intelligence


Machine Intelligence
DOWNLOAD
Author : Pethuru Raj
language : en
Publisher: CRC Press
Release Date : 2023-10-03

Machine Intelligence written by Pethuru Raj and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-03 with Computers categories.


Machines are being systematically empowered to be interactive and intelligent in their operations, offerings. and outputs. There are pioneering Artificial Intelligence (AI) technologies and tools. Machine and Deep Learning (ML/DL) algorithms, along with their enabling frameworks, libraries, and specialized accelerators, find particularly useful applications in computer and machine vision, human machine interfaces (HMIs), and intelligent machines. Machines that can see and perceive can bring forth deeper and decisive acceleration, automation, and augmentation capabilities to businesses as well as people in their everyday assignments. Machine vision is becoming a reality because of advancements in the computer vision and device instrumentation spaces. Machines are increasingly software-defined. That is, vision-enabling software and hardware modules are being embedded in new-generation machines to be self-, surroundings, and situation-aware. Machine Intelligence: Computer Vision and Natural Language Processing emphasizes computer vision and natural language processing as drivers of advances in machine intelligence. The book examines these technologies from the algorithmic level to the applications level. It also examines the integrative technologies enabling intelligent applications in business and industry. Features: Motion images object detection over voice using deep learning algorithms Ubiquitous computing and augmented reality in HCI Learning and reasoning in Artificial Intelligence Economic sustainability, mindfulness, and diversity in the age of artificial intelligence and machine learning Streaming analytics for healthcare and retail domains Covering established and emerging technologies in machine vision, the book focuses on recent and novel applications and discusses state-of-the-art technologies and tools.



Domain Adaptation In Computer Vision With Deep Learning


Domain Adaptation In Computer Vision With Deep Learning
DOWNLOAD
Author : Hemanth Venkateswara
language : en
Publisher: Springer Nature
Release Date : 2020-08-18

Domain Adaptation In Computer Vision With Deep Learning written by Hemanth Venkateswara and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.


This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.



Machine Learning For Computer Vision


Machine Learning For Computer Vision
DOWNLOAD
Author : Roberto Cipolla
language : en
Publisher: Springer
Release Date : 2012-07-27

Machine Learning For Computer Vision written by Roberto Cipolla and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-27 with Technology & Engineering categories.


Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. A summary of the past Computer Vision Summer Schools can be found at: http://www.dmi.unict.it/icvss This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.



Hands On Java Deep Learning For Computer Vision


Hands On Java Deep Learning For Computer Vision
DOWNLOAD
Author : Klevis Ramo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-21

Hands On Java Deep Learning For Computer Vision written by Klevis Ramo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.



Explainable And Interpretable Models In Computer Vision And Machine Learning


Explainable And Interpretable Models In Computer Vision And Machine Learning
DOWNLOAD
Author : Hugo Jair Escalante
language : en
Publisher: Springer
Release Date : 2018-11-29

Explainable And Interpretable Models In Computer Vision And Machine Learning written by Hugo Jair Escalante and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-29 with Computers categories.


This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations