Download Machine Learning For Wireless Communications And Networking - eBooks (PDF)

Machine Learning For Wireless Communications And Networking


Machine Learning For Wireless Communications And Networking
DOWNLOAD

Download Machine Learning For Wireless Communications And Networking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Wireless Communications And Networking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Reinforcement Learning For Wireless Communications And Networking


Deep Reinforcement Learning For Wireless Communications And Networking
DOWNLOAD
Author : Dinh Thai Hoang
language : en
Publisher: John Wiley & Sons
Release Date : 2023-07-25

Deep Reinforcement Learning For Wireless Communications And Networking written by Dinh Thai Hoang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-25 with Technology & Engineering categories.


Deep Reinforcement Learning for Wireless Communications and Networking Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking. Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design. Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as: Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association Network layer applications, covering traffic routing, network classification, and network slicing With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.



Machine Learning For Future Wireless Communications


Machine Learning For Future Wireless Communications
DOWNLOAD
Author : Fa-Long Luo
language : en
Publisher: John Wiley & Sons
Release Date : 2019-12-19

Machine Learning For Future Wireless Communications written by Fa-Long Luo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-19 with Technology & Engineering categories.


A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.



Wireless Communication With Artificial Intelligence


Wireless Communication With Artificial Intelligence
DOWNLOAD
Author : Anuj Singal
language : en
Publisher: CRC Press
Release Date : 2022-09-16

Wireless Communication With Artificial Intelligence written by Anuj Singal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-16 with Technology & Engineering categories.


This reference text discusses advances in wireless communication, design challenges, and future research directions to design reliable wireless communication. The text discusses emerging technologies including wireless sensor networks, Internet of Things (IoT), cloud computing, mm-Wave, Massive MIMO, cognitive radios (CR), visible light communication (VLC), wireless optical communication, signal processing, and channel modeling. The text covers artificial intelligence-based applications in wireless communication, machine learning techniques and challenges in wireless sensor networks, and deep learning for channel and bandwidth estimation during optical wireless communication. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering.



Applications Of Machine Learning In Wireless Communications


Applications Of Machine Learning In Wireless Communications
DOWNLOAD
Author : Ruisi He
language : en
Publisher:
Release Date : 2019

Applications Of Machine Learning In Wireless Communications written by Ruisi He and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Data mining categories.


In such an era of big data where data mining and data analysis technologies are effective approaches for wireless system evaluation and design, the applications of machine learning in wireless communications have received a lot of attention recently. Machine learning provides feasible and new solutions for the complex wireless communication system design. It has been a powerful tool and popular research topic with many potential applications to enhance wireless communications, e.g. radio channel modelling, channel estimation and signal detection, network management and performance improvement, access control, resource allocation. However, most of the current researches are separated into different fields and have not been well organized and presented yet. It is therefore difficult for academic and industrial groups to see the potentialities of using machine learning in wireless communications. It is now appropriate to present a detailed guidance of how to combine the disciplines of wireless communications and machine learning.



Machine Learning And Deep Learning Techniques In Wireless And Mobile Networking Systems


Machine Learning And Deep Learning Techniques In Wireless And Mobile Networking Systems
DOWNLOAD
Author : K. Suganthi
language : en
Publisher: CRC Press
Release Date : 2021-09-13

Machine Learning And Deep Learning Techniques In Wireless And Mobile Networking Systems written by K. Suganthi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-13 with Computers categories.


This book offers the latest advances and results in the fields of Machine Learning and Deep Learning for Wireless Communication and provides positive and critical discussions on the challenges and prospects. It provides a broad spectrum in understanding the improvements in Machine Learning and Deep Learning that are motivating by the specific constraints posed by wireless networking systems. The book offers an extensive overview on intelligent Wireless Communication systems and its underlying technologies, research challenges, solutions, and case studies. It provides information on intelligent wireless communication systems and its models, algorithms and applications. The book is written as a reference that offers the latest technologies and research results to various industry problems.



Machine Learning And Wireless Communications


Machine Learning And Wireless Communications
DOWNLOAD
Author : Yonina C. Eldar
language : en
Publisher: Cambridge University Press
Release Date : 2022-08-04

Machine Learning And Wireless Communications written by Yonina C. Eldar and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-04 with Computers categories.


Discover connections between these transformative and impactful technologies, through comprehensive introductions and real-world examples.



Communication Networks And Service Management In The Era Of Artificial Intelligence And Machine Learning


Communication Networks And Service Management In The Era Of Artificial Intelligence And Machine Learning
DOWNLOAD
Author : Nur Zincir-Heywood
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-03

Communication Networks And Service Management In The Era Of Artificial Intelligence And Machine Learning written by Nur Zincir-Heywood and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-03 with Technology & Engineering categories.


COMMUNICATION NETWORKS AND SERVICE MANAGEMENT IN THE ERA OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING Discover the impact that new technologies are having on communication systems with this up-to-date and one-stop resource Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning delivers a comprehensive overview of the impact of artificial intelligence (AI) and machine learning (ML) on service and network management. Beginning with a fulsome description of ML and AI, the book moves on to discuss management models, architectures, and frameworks. The authors also explore how AI and ML can be used in service management functions like the generation of workload profiles, service provisioning, and more. The book includes a handpicked selection of applications and case studies, as well as a treatment of emerging technologies the authors predict could have a significant impact on network and service management in the future. Statistical analysis and data mining are also discussed, particularly with respect to how they allow for an improvement of the management and security of IT systems and networks. Readers will also enjoy topics like: A thorough introduction to network and service management, machine learning, and artificial intelligence An exploration of artificial intelligence and machine learning for management models, including autonomic management, policy-based management, intent based management, and network virtualization-based management Discussions of AI and ML for architectures and frameworks, including cloud systems, software defined networks, 5G and 6G networks, and Edge/Fog networks An examination of AI and ML for service management, including the automatic generation of workload profiles using unsupervised learning Perfect for information and communications technology educators, Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning will also earn a place in the libraries of engineers and professionals who seek a structured reference on how the emergence of artificial intelligence and machine learning techniques is affecting service and network management.



Next Generation Wireless Networks Meet Advanced Machine Learning Applications


Next Generation Wireless Networks Meet Advanced Machine Learning Applications
DOWNLOAD
Author : Comşa, Ioan-Sorin
language : en
Publisher: IGI Global
Release Date : 2019-01-25

Next Generation Wireless Networks Meet Advanced Machine Learning Applications written by Comşa, Ioan-Sorin and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-25 with Technology & Engineering categories.


The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.



Green Machine Learning Protocols For Future Communication Networks


Green Machine Learning Protocols For Future Communication Networks
DOWNLOAD
Author : Saim Ghafoor
language : en
Publisher: CRC Press
Release Date : 2023-10-25

Green Machine Learning Protocols For Future Communication Networks written by Saim Ghafoor and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-25 with Computers categories.


Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms. For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications.



Federated Learning For Future Intelligent Wireless Networks


Federated Learning For Future Intelligent Wireless Networks
DOWNLOAD
Author : Yao Sun
language : en
Publisher: John Wiley & Sons
Release Date : 2023-12-27

Federated Learning For Future Intelligent Wireless Networks written by Yao Sun and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-27 with Technology & Engineering categories.


Federated Learning for Future Intelligent Wireless Networks Explore the concepts, algorithms, and applications underlying federated learning In Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers deliver a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy. Readers will explore a wide range of topics that show how federated learning algorithms, concepts, and design and optimization issues apply to wireless communications. Readers will also find: A thorough introduction to the fundamental concepts and algorithms of federated learning, including horizontal, vertical, and hybrid FL Comprehensive explorations of wireless communication network design and optimization for federated learning Practical discussions of novel federated learning algorithms and frameworks for future wireless networks Expansive case studies in edge intelligence, autonomous driving, IoT, MEC, blockchain, and content caching and distribution Perfect for electrical and computer science engineers, researchers, professors, and postgraduate students with an interest in machine learning, Federated Learning for Future Intelligent Wireless Networks will also benefit regulators and institutional actors responsible for overseeing and making policy in the area of artificial intelligence.